K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

\(2\left(2-x\right)\cdot2\cdot\left(2-x\right)\cdot1212\cdot\left(x-2\right)\cdot2\cdot\left(x-2\right)\cdot2=0\)

\(4\left(2-x\right)^2\cdot4848\left(x-2\right)^2=0\)

\(19392\left(2-x\right)^2\left(x-2\right)^2=0\)

\(\left(2-x\right)^2\left(x-2\right)^2=0\)

\(TH1:\left(2-x\right)^2=0\Rightarrow2-x=0\Rightarrow x=2\)

\(TH2:\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy x = 2

15 tháng 4 2019

<br class="Apple-interchange-newline"><div id="inner-editor"></div>2(2−x)·2·(2−x)·1212·(x−2)·2·(x−2)·2=0

4(2−x)2·4848(x−2)2=0

19392(2−x)2(x−2)2=0

(2−x)2(x−2)2=0

TH1:(2−x)2=0⇒2−x=0⇒x=2

TH2:(x−2)2=0⇒x−2=0⇒x=2

 x = 2

15 tháng 4 2019

2(2-x)+ 1/2 (x-2)^2

15 tháng 4 2019

Đặt \(f\left(x\right)=2.\left(2-x\right)+\left(x-2\right)^2\)

Ta có: \(f\left(x\right)=0\Leftrightarrow2.\left(2-x\right)+\left(x-2\right)^2=0\)

                               \(\Leftrightarrow\hept{\begin{cases}2.\left(2-x\right)=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=2\end{cases}}\)

Vậy x=2 là nghiệm của đa thức trên 

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

2 tháng 5 2017

\(a,2x+5=0\Rightarrow2x=-5\Rightarrow x=-\frac{5}{2}\)

\(b,x^2+5x=0\Rightarrow x\left(x+5\right)=0\)

\(\Rightarrow x=0\)hoặc x+5x=0

=>x=0          hoặc x=\(\frac{+}{-}5\)

\(\left[\frac{x+1}{2}\right]\left(2x-7\right)=0+\Rightarrow\frac{x+1}{2}=0\Leftrightarrow2x-7=0\)

\(\frac{x+1}{2}=0\Rightarrow x+1=0\Rightarrow x=-1\)

\(2x-7=0\Rightarrow2x=7\Rightarrow x=\frac{7}{2}\)

cho mk hỏi [ ] là gì vậy

15 tháng 4 2020

Bậc của đa thức A ( x ) : 5

Bậc của đa thức B ( x ) : 5

Hệ số cao nhất của đa thức A ( x ) : 1

Hệ số cao nhất của đa thức B ( x ) : - 1

Hệ số tự do của đa thức A ( x ) : - 7

Hệ số tự do của đa thức B ( x ) : - 1

15 tháng 4 2020

A(x): Bậc 5, 1, -7

B(x): Bậc 5, -1, -1.

26 tháng 7 2016

x2+4x-21 = x2 +7x-3x-21=x(x+7)-3(x+7)=(x-3)(x+7)

Nghiệm của pt là x=3 hoặc x = -7

26 tháng 7 2016

mk ko chắc lắm mình ghi kết quả nha :)

\(-\sqrt{33}-2\)

\(\sqrt{33}-2\)

mk ko chắc lắm :)

2 tháng 5 2018

a, \(4x+9\)

Để đa thức trên có nghiệm thì:

\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)

Vậy, ...

b, \(-5x+6\)

Để đa thức trên có nghiệm thì:

\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)

Vậy, ...

c, \(x^2-1\)

Để đa thức trên có nghiệm thì:

\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy, ...

d, \(x^2-9\)

Để đa thức trên có nghiệm thì:

\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

e, \(x^2-x\)

Để đa thức trên có nghiệm thì:

\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy, ...

f, \(x^2-2x\)

Để đa thức trên có nghiệm thì:

\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy, ...

g, \(x^2-3x\)

Để đa thức trên có nghiệm thì:

\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy, ...

h, \(3x^2-4x\)

Để đa thức trên có nghiệm thì:

\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy, ...

2 tháng 5 2018

d)<=>x^2=9=(+-3)^2

x=+-3

h)<=> x(3x-4)=0

x=0;x=4/3

14 tháng 2 2018

Ta có số nguyên âm lớn nhất là -1 => y = -1

Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:

\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)\(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)\(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)

\(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)\(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)\(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)\(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)\(\frac{-37}{8}\left(\frac{-4}{3}\right)\)\(\frac{37}{6}\)

Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)