Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=2.\left(2-x\right)+\left(x-2\right)^2\)
Ta có: \(f\left(x\right)=0\Leftrightarrow2.\left(2-x\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2.\left(2-x\right)=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=2\end{cases}}\)
Vậy x=2 là nghiệm của đa thức trên
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
\(a,2x+5=0\Rightarrow2x=-5\Rightarrow x=-\frac{5}{2}\)
\(b,x^2+5x=0\Rightarrow x\left(x+5\right)=0\)
\(\Rightarrow x=0\)hoặc x+5x=0
=>x=0 hoặc x=\(\frac{+}{-}5\)
\(\left[\frac{x+1}{2}\right]\left(2x-7\right)=0+\Rightarrow\frac{x+1}{2}=0\Leftrightarrow2x-7=0\)
\(\frac{x+1}{2}=0\Rightarrow x+1=0\Rightarrow x=-1\)
\(2x-7=0\Rightarrow2x=7\Rightarrow x=\frac{7}{2}\)
Bậc của đa thức A ( x ) : 5
Bậc của đa thức B ( x ) : 5
Hệ số cao nhất của đa thức A ( x ) : 1
Hệ số cao nhất của đa thức B ( x ) : - 1
Hệ số tự do của đa thức A ( x ) : - 7
Hệ số tự do của đa thức B ( x ) : - 1
x2+4x-21 = x2 +7x-3x-21=x(x+7)-3(x+7)=(x-3)(x+7)
Nghiệm của pt là x=3 hoặc x = -7
mk ko chắc lắm mình ghi kết quả nha :)
\(-\sqrt{33}-2\)
\(\sqrt{33}-2\)
mk ko chắc lắm :)
a, \(4x+9\)
Để đa thức trên có nghiệm thì:
\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)
Vậy, ...
b, \(-5x+6\)
Để đa thức trên có nghiệm thì:
\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)
Vậy, ...
c, \(x^2-1\)
Để đa thức trên có nghiệm thì:
\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy, ...
d, \(x^2-9\)
Để đa thức trên có nghiệm thì:
\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)
e, \(x^2-x\)
Để đa thức trên có nghiệm thì:
\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, ...
f, \(x^2-2x\)
Để đa thức trên có nghiệm thì:
\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy, ...
g, \(x^2-3x\)
Để đa thức trên có nghiệm thì:
\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy, ...
h, \(3x^2-4x\)
Để đa thức trên có nghiệm thì:
\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy, ...
Ta có số nguyên âm lớn nhất là -1 => y = -1
Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:
\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)= \(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)= \(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)
= \(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)= \(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)= \(\frac{-37}{8}\left(\frac{-4}{3}\right)\)= \(\frac{37}{6}\)
Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)
\(2\left(2-x\right)\cdot2\cdot\left(2-x\right)\cdot1212\cdot\left(x-2\right)\cdot2\cdot\left(x-2\right)\cdot2=0\)
\(4\left(2-x\right)^2\cdot4848\left(x-2\right)^2=0\)
\(19392\left(2-x\right)^2\left(x-2\right)^2=0\)
\(\left(2-x\right)^2\left(x-2\right)^2=0\)
\(TH1:\left(2-x\right)^2=0\Rightarrow2-x=0\Rightarrow x=2\)
\(TH2:\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy x = 2
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2(2−x)·2·(2−x)·1212·(x−2)·2·(x−2)·2=0
4(2−x)2·4848(x−2)2=0
19392(2−x)2(x−2)2=0
(2−x)2(x−2)2=0
TH1:(2−x)2=0⇒2−x=0⇒x=2
TH2:(x−2)2=0⇒x−2=0⇒x=2
x = 2