K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

\(Q\left(x\right)=x^2-3x+2+4x-x^2=x+2\)

Cho \(Q\left(x\right)=0\)\(\Rightarrow x+2=0\)\(\Leftrightarrow x=-2\)

Vậy nghiệm của đa thức Q(x) là \(x=-2\)

a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)

\(N\left(x\right)=2x^4+3x^2+4x-5\)

\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)

Đặt P(x)=0

=>-3x-7=0

hay x=-7/3

b: Q(x)=N(x)-M(x)

\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)

\(=4x^4+6x^2+11x+7\)

21 tháng 5 2022

`a)P(x)=M(x)+N(x)`

         `=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`

         `=-3x-7`

Cho `P(x)=0`

`=>-3x-7=0`

`=>-3x=7`

`=>x=-7/3`

________________________________________________________

`b)Q(x)+M(x)=N(x)`

`=>Q(x)=N(x)-M(x)`

`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`

`=>Q(x)=4x^4+6x^2+11x-3`

11 tháng 4 2022

giúp mik vớiiiiiiiii

28 tháng 6 2020

a) P(x) = 5x- 3x + 7 - x

        = 5x3 - 4x + 7

Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1

        = -x3 + x2 + x + 1

b) M(x) = P(x) + Q(x)

             = ( 5x3 - 4x + 7 ) + ( -x3 + x2 + x + 1 )

             = 5x3 - 4x + 7 -x3 + x2 + x + 1

             = 4x3 + x2 - 3x + 8

N(x) = P(x) - Q(x) 

        = ( 5x3 - 4x + 7 ) - ( -x3 + x2 + x + 1 )

        = 5x3 - 4x + 7 + x3 - x2 - x - 1

        = 6x3 - x2 - 5x + 6

c) M(x) =  4x3 + x2 - 3x + 8

M(x) = 0 <=> 4x3 + x2 - 3x + 8 = 0

( Bạn xem lại đề nhé chứ lớp 7 chưa học tìm nghiệm đa thức bậc 3 đâu ) 

28 tháng 6 2020

oke bạn, thank bạn nhaaaaa:)

9 tháng 8 2017

a)  \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)

   \(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\) 

Q(x)  \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)

b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\)\(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

7 tháng 5 2022

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

7 tháng 5 2022

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)