Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)
\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0
Đa thức f(x) có 3 nghiệm
+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0
= 0 - 0 + 0
= 0
+)
Đa thức f(x) có nhiều nhất 1 nghiệm . Nghiệm của đa thức f(x) là 0 vì : 2 . 0^3 - 8. 0^2 + 9.0
= 2 . 0 - 8. 0 +0
=0
k nha
Đặt F(x)=0
\(\Leftrightarrow\left(x^2+2\right)\left(2x^2-8x\right)=0\)
\(\Leftrightarrow2x\left(x^2+2\right)\left(x-4\right)=0\)
mà 2>0
và \(x^2+2>0\forall x\)
nên x(x-4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy: S={0;4}
a) Cho D(x) =0
=> (x -1)^2 +( x+5)^2 =0
=> (x-1) ^2 = -( x+5)^2
=> x-1 = -x-5
=> x+x = -5+1
2x = -4
=> x = -2
KL : x=-2 là nghiệm của D(x)
b) Cho N(x) =0
=> x^2 -6x +8 =0
=> x.(x-6) =-8
=> x = 2
KL: x=2 là nghiệm của N(x)
c) Cho H(x) =0
=> 8x^2 -6x -2 =0
2.( 4x^2 -3x -1) =0
=> 4x^2 -3x -1 =0
x.(4x-3) =1
=> x=1
KL: x=1 là nghiệm của H(x)
d) Cho F(x) =0
=> 2x^3 +x^2 -8x -4 =0
x( 2x^2 +x -8) = 4
=> x= 2
KL: x=2 là nghiệm của F(x)
Chúc bn học tốt !!!
a) x = 1 hoặc x = -5
b) x = 2 hoặc x = 4
c) x = 1 hoặc x = -1/4
d) x = -2 hoặc x = -1/2 hoặc x = 2
Lời giải:
a)
$f(x)=x^3-2x=0$
$\Leftrightarrow x(x^2-2)=0$
\(\Rightarrow \left[\begin{matrix} x=0\\ x^2-2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\pm \sqrt{2}\end{matrix}\right. \)
Vậy tập nghiệm của đa thức $f(x)$ là $\left\{0;\pm \sqrt{2}\right\}$
b)
Gọi đa thức cần tìm có dạng $f(x)=9x^2+ax+b$
Nghiệm của đa thức là $\frac{2}{3}$ suy ra:
$f(\frac{2}{3})=4+\frac{2}{3}a+b=0(1)$
$f(-1)=25\Leftrightarrow 9-a+b=25(2)$
Từ $(1);(2)\Rightarrow a=-12; b=4$
Vậy đa thức cần tìm là $9x^2-12x+4$
\(P\left(x\right)=x^2+8x-9=0\Rightarrow x^2-x+9x-9=0\)
\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\Rightarrow\left(x-1\right)\left(x+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+9=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-9\end{cases}}\)
Vậy nghiệm của đa thức P(x) la x=1 hoặc x=-9