K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Đặt \(\frac{13}{15}x-\left(\frac{15}{21}+x\right).\frac{7}{30}=0\)

\(\Leftrightarrow\frac{13}{15}x-\left(\frac{1}{6}+\frac{7}{30}x\right)=0\Leftrightarrow\frac{19}{30}x-\frac{1}{6}=0\Leftrightarrow x=\frac{5}{19}\)

Tương tự thôi 

21 tháng 7 2019

a. +) x+2=9              +) x+2=-9 

     => x=7                  =>x=-11

21 tháng 7 2019

a) (x + 2)2 = 81

=> (x + 2)2 = 92

=> \(\orbr{\begin{cases}x+2=-9\\x+2=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=-11\\x=7\end{cases}}\)

b) 5x + 5x + 2 = 650

=> 5x + 5x . 52 = 650

=> 5x + 5x . 25 = 650

=> 5x (25 + 1)   = 650

=> 5x . 26          = 650

=> 5x                 = 650 : 26

=> 5x                 = 25

=> 5x                 = 52

=>   x                 = 2

d) (2x - 1)2 - 5 = 20

=> (2x - 1)2      = 25

=> (2x - 1)2       = 52

=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\) 

g) (x - 1)3 = (x - 1)

=> (x - 1)3 - (x - 1) = 0

=> (x - 1) .[(x - 1)2 - 1] = 0

=> \(\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x-1=\pm1\end{cases}}}\)

Nếu x - 1 = 1 

=> x = 2

Nếu x - 1 = -1

=> x = 0

Vậy \(x\in\left\{0;1;2\right\}\)

8 tháng 8 2019

(x+1)^2>=0 và (y-1)^2>=0

=>C>=-10

Dấu = xảy ra khi x+1=0,y-1=0

=>x=-1,y=1

Vậy C=-10 khi x=-1,y=1

k cho mk nha

8 tháng 8 2019

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2-10\ge-10}\)

Dấu ''='' xảy ra <=> x = -1 ; y = 1

19 tháng 4 2020

Bài 1:

Mình sửa lại đề 1 chút:  \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)

Số hạng trong dãy là: (101-1):2+1=51

P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101

Vì (-1)2n+1=-1 với n thuộc Z

=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)

=> P(-1)=-51

29 tháng 8 2020

Bài làm:

Ta có: \(2\cdot\left(2-x\right)+\frac{1}{2}\cdot\left(2-x\right)^2=0\)

\(\Leftrightarrow\left(2-x\right)\left[2+\frac{1}{2}\left(2-x\right)\right]=0\)

\(\Leftrightarrow\left(2-x\right)\left(3-\frac{x}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\3-\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

29 tháng 8 2020

2( 2 - x ) + 1/2( 2 - x )2

Đa thức có nghiệm <=> 2( 2 - x ) + 1/2( 2 - x )2 = 0

                               <=> ( 2 - x )[ 2 + 1/2( 2 - x ) ] = 0

                               <=> ( 2 - x )[ 2 + 1 - 1/2x ]

                               <=> ( 2 - x )( 3 - 1/2x ) = 0

                               <=> \(\orbr{\begin{cases}2-x=0\\3-\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

NM
29 tháng 7 2021

a. ta có :

\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm

b.ta có 

\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm

21 tháng 7 2019

a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)

=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)

=>  x + 1 = 0

=> x = -1

21 tháng 7 2019

b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)

=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)

=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)

=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

=> x - 2021 = 0

=> x = 2021

c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)

=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)

=> \(-\frac{1}{12}x+6=7\)

=> \(-\frac{1}{12}x=1\)

=> x = -12

a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)

Vậy nghiệm của M( x ) là \(\frac{1}{4}\)

b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH

TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)

TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)

c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH

TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)

\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)