Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)
\(=10x^3+x^2-8x+12\)
b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy tập nghiệm đa thức trên là S = { -2 ; 2 }
ta có
4x2 - 3x \(\ge\)0
=> \(4x^2-3x+7\ge7\)
=> vậy phương trình vô nghiệm
hok tốt .
Bài này áp dụng hằng đẳng thức lớp 8 a2-2ab+b2=(a-b)2
\(M\left(x\right)=4x^2-3x+7\)
\(M\left(x\right)=3x^2+\text{[}x^2-2.1,5x+\left(1,5^2\right)\text{]+4,75}\)
\(M\left(x\right)=3x^2+\left(x-1,5\right)^2+4,75\)
Ta có: \(\orbr{\begin{cases}3x^2\ge0\forall x\\\left(x-1,5\right)^2\ge0\forall x\end{cases}\Rightarrow3x^2+\left(x-1,5\right)^2+4,75\ge4,75\forall x}\)
\(\Rightarrow3x^2+\left(x-1,5\right)^2+4,75>0\)
\(\Rightarrow M\left(x\right)>0\)
\(\Rightarrow\text{đ}a th\text{ức} M\left(x\right)\)vô nghiệm
Vậy đa thức M(x) vô nghiệm
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
g(x) = ( x - 3 ) x ( 16 - 4x )
Ơ đay xẽ xảy ra hai trương hợp :
+) ( x - 3 ) = 0
x = 0 + 3
x = 3
+) ( 16 - 4x ) = 0
4x = 16 - 0
4x = 16
x = 16 : 4
x = 4
Đúng nha Hero chibi
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm