K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

\(3x^2+x=0\)(nghiệm của đa thức là giá trị làm cho đa thức đó bằng 0)

\(\Rightarrow x\left(3x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\)         \(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)

Vậy x= 0 hoặc x=\(\frac{-1}{3}\)

1 tháng 5 2017

3x^2 + x = 0

Suy ra x ( 3x ) = 0

Suy ra x=0                          Suy ra x = 10

     3x + 1 =0                                  x = -1/3     

29 tháng 4 2016

a) Q(x) = (3x-x^2-7+x^3) - (x^3+3x-2x^2-5) = (3x-3x) - (x^2-2x^2)+(x^3-x^3)-(7-5) = 0 - x^2 + 0 - 2 = - x^2 - 2

30 tháng 4 2016

a) 3x+4=0

x= - 4/3

b) x2+4 >0 voi mọi x nên M(x) vô nghiệm

a) Đặt F(x)=0

\(3x^2-6x+3x^3=0\)

\(\Leftrightarrow3x^3+3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)

mà 3>0

nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)

Vậy: Sf(x)={0;-2;1}(1)

c) Thay x=0 vào đa thức g(x), ta được:

\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)

\(=-9+0+0+0=-9\)

mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)

Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)

15 tháng 7 2016

Nghiệm của đa thứ h(x) là tất cả các giá trị của x sao cho, h(x)=0

=> x3+25x=0

=>x(x2+25)=0

=> x=0 hay x2+25=0

=>x=0 hay x2=-25(vô lí)

=>x=0

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)