K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

​(x-3)(x+2)(x+4)=0 => nghiệm

6 tháng 8 2020

Ta có :\(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=\left(-\frac{3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)

=> \(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=-\frac{1}{2}\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\)

=> \(2x-2=-\frac{1}{2}\)

=> \(2x=\frac{3}{2}\)

=> \(x=\frac{3}{4}\)

25 tháng 9 2021

Kẻ Bz//Ax

Ta có: Ax//Bz

\(\Rightarrow\widehat{BAx}=\widehat{ABz}=30^0\)(so le trong)

\(\Rightarrow\widehat{zBC}=\widehat{ABC}-\widehat{BAx}=90^0-30^0=60^0\)

Ta có: \(\widehat{zBC}+\widehat{BCy}=60^0+120^0=180^0\)

Mà 2 góc này là 2 góc trong cùng phía

=> Bz//Cy

Mà Bz//Ax

=> Ax//Cy

15 tháng 4 2019

a)f(x)+g(x)=10xmũ2-8x+ 14/3

b)f(x)-g(x)=10x mũ 2 +4x+16/3

nghiệm chưa tính ddcj nha

16 tháng 4 2019

a;\(f\left(x\right)+g\left(x\right)=\left(5x^2-2x+5\right)+\left(5x^2-6x-\frac{1}{3}\right)=25x^2-8x+\frac{1}{4}\)

b'\(f\left(x\right)-g\left(x\right)=\left(5x^2-2x+5\right)-\left(5x^2-6x-\frac{1}{3}\right)=4x+\frac{16}{3}\)

c;\(f\left(x\right)-g\left(x\right)=0\Leftrightarrow4x+\frac{16}{3}=0\)

                                         \(\Leftrightarrow4x=-\frac{16}{3}\)

                                           \(\Leftrightarrow x=-\frac{4}{3}\)

Vậy nghiệm của đa thức f(x)-g(x) là : x=-4/3

30 tháng 4 2019

 Ta có: x2 + 2x + 3

    = x2 + x + x + 1 + 2

  = (x2 + x) + (x + 1) + 2

  = x(x + 1) + (x + 1) + 2

  = (x + 1)(x + 1) + 2

  = (x + 1)2 + 2 > 0 [ vì (x + 1)2 \(\ge\)0; 2 >0)

=> đa thức f(x) ko có nghiệm

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

2 tháng 5 2018

a, \(4x+9\)

Để đa thức trên có nghiệm thì:

\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)

Vậy, ...

b, \(-5x+6\)

Để đa thức trên có nghiệm thì:

\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)

Vậy, ...

c, \(x^2-1\)

Để đa thức trên có nghiệm thì:

\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy, ...

d, \(x^2-9\)

Để đa thức trên có nghiệm thì:

\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

e, \(x^2-x\)

Để đa thức trên có nghiệm thì:

\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy, ...

f, \(x^2-2x\)

Để đa thức trên có nghiệm thì:

\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy, ...

g, \(x^2-3x\)

Để đa thức trên có nghiệm thì:

\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy, ...

h, \(3x^2-4x\)

Để đa thức trên có nghiệm thì:

\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy, ...

2 tháng 5 2018

d)<=>x^2=9=(+-3)^2

x=+-3

h)<=> x(3x-4)=0

x=0;x=4/3