Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt F(x)=0
⇔\(3x^2-6x+3x^3=0\)
\(\Leftrightarrow3x^3+3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)
mà 3>0
nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)
Vậy: Sf(x)={0;-2;1}(1)
c) Thay x=0 vào đa thức g(x), ta được:
\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)
\(=-9+0+0+0=-9\)
mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)
Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)
a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8
g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6
f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )
= 4x2 - x + 2
g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )
= x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8
= ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )
= 2x5 + 14x4 + 4x3 + 2x2 -9x - 14
Đặt H(x) = g(x) + f(x)
=> H(x) = 4x2 - x + 2
H(x) = 0 <=> 4x2 - x + 2 = 0
<=> x(4x - 1) = -2
x | -1 | -2 | 1 | 2 |
4x-1 | 2 | 1 | -2 | -1 |
x | 1/4 | 1/2 | -1/4 | 0 |
loại | loại | loại | loại |
=> Không có giá trị x thỏa mãn
Vậy H(x) vô nghiệm
Mình chỉ biết làm thế này thôi
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
\(b)\) Ta có :
\(7x^2-8x-15=0\)
\(\Leftrightarrow\)\(\left(7x^2+7x\right)-\left(15x+15\right)=0\)
\(\Leftrightarrow\)\(7x\left(x+1\right)-15\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(7x-15\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x-15=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=15\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{15}{7}\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(g\left(x\right)=7x^2-8x-15\) là \(x=\frac{15}{7}\) hoặc \(x=-1\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(2x^2-5x+3=0\)
\(\Leftrightarrow\)\(\left(2x^2-2x\right)+\left(-3x+3\right)=0\)
\(\Leftrightarrow\)\(2x\left(x-1\right)+\left(-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=3\\x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(f\left(x\right)=2x^2-5x+3\) là \(x=\frac{3}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~
phân tích thành nhân tử thì dc chứ tìm nghiệm mà ko có kết quả thì chịu
a,x2 +10x + 16= x2 + 2x +8x+16=x(x+2)+8(x+2)=(x+8)(x+2)
b, x2 - 6x - 7 = x2 + x - 7x -7= x(x+1)-7(x+1)=(x-7)(x+1)
c,mình ko làm dc
a/ Ta có \(f\left(x\right)=x^2+10x+16\)
Khi f (x) = 0
=> \(x^2+10x+16=0\)
=> \(x^2+2x+8x+16=0\)
=> \(\left(x^2+2x\right)+\left(8x+16\right)=0\)
=> \(x\left(x+2\right)+8\left(x+2\right)=0\)
=> \(\left(x+2\right)\left(x+8\right)=0\)
=> \(\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
Vậy f (x) có 2 nghiệm: x1 = -2; x2 = -8.
b/ Ta có \(g\left(x\right)=x^2-6x-7\)
Khi g (x) = 0
=> \(x^2-6x-7=0\)
=> \(x^2+x-7x-7=0\)
=> \(\left(x^2+x\right)-\left(7x+7\right)=0\)
=> \(x\left(x+1\right)-7\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(x-7\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)
Vậy g (x) có 2 nghiệm: x1 = -1; x2 = 7.
c) Bó tay...
Giải:
a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)
\(\Leftrightarrow h\left(x\right)=x+3x^2\)
b) Để đa thức h(x) có nghiệm
\(\Leftrightarrow h\left(x\right)=0\)
\(\Leftrightarrow x+3x^2=0\)
\(\Leftrightarrow x\left(1+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
\(a)\) Ta có :
\(x^2+6x+9=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy nghiệm của đa thức \(f\left(x\right)=x^2+6x+9\) là \(x=-3\)
Chúc bạn học tốt ~