Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)\(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
\(b.\)\(5x^3-4x=0\)
\(\Leftrightarrow x\left(5x^2-4\right)=0\)
\(c.\)\(\left(x+2\right)\left(7-4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\7-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{4}\end{cases}}}\)
\(d.\)\(2x\left(x+1\right)-x-1=0\)
\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
:))
Ta có:
h(x)= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-( 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
=> h(x)=-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2)
=> h(x)=x2+5x-2
b,
Cho x2+5x-2=0
=> ... tự giải :))
a,f(x)=2x^3+3x^2-2x+3
g(x)=2x^3+3x^2-7x+2
h(x)=f(x)-g(x)=(2x^3+3x^2-2x+3)-(2x^3+3x^2-7x+2)
=2x^3+3x^2-2x+3-2x^3-3x^2+7x-2
=(2x^3-2x^3)+(3x^2-3x^2)+(-2x+7x)+(3-2)
=5x+1
b,Đặt_h(x)=5x+1=0
5x=0-1
5x=-1
x=-1/5
Vậy_nghiệm_của_đa_thức_h(x)_là_-1/5
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2
g)G(x)=x^3-4x=0
=>x(x^2-4)=0
=>\(\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=4\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=\sqrt{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức G(x) là 0 hoặc 2
h) H(x)=5x^3-4x^2-3x^3+3x^2-2x^3+x=0
=>(5x^3-3x^3-2x^3)+(-4x^2+3x^2)+x
=>x-x^2=0
=>x(1-x)
=>\(\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức H(x) là 0 hoặc 1
Bài 1 ( a )
\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)
\(=-x^3-2x^2+5x-7\)
\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)
\(=-3x^4+x^3+10x^2-7\)
Bài 1 ( b )
\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)
\(=3x^4-2x^2+15x-14\)
\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)
\(=-3x^4-2x^3-5x\)
1)
f(x) = 3x - 6 = 3x - 3.2 = 3(x - 2) => nghiệm của f(x) là 2.
h(x) = -5x + 30 = -5x + (-5) . (-6) = -5(x - 6) => nghiệm của h(x) là 6.
g(x) = (x - 3)(16 - 4x) => nghiệm của g(x) là 3 hoặc 4.
k(x) = x2 - 81 = x2 - 92 = (x + 9)(x - 9) => nghiệm của k(x) là -9 hoặc 9.
m(x) = x2 + 7x - 8 = x2 - x + 8x - 8 = x(x - 1) + 8(x - 1) = (x + 8)(x - 1) => nghiệm của m(x) là -8 hoặc 1.
n(x) = 5x2 + 9x + 4 = 5x2 + 5x + 4x + 4 = 5x(x + 1) + 4(x + 1) = (5x + 4)(x + 1) => nghiệm của n(x) là \(-\frac{4}{5}\)hoặc -1.
A(x) = 3x2 - 12x = 3x2 - 3x . 4 = 3x(x - 4) => nghiệm của đa thức là 0 hoặc 4.
2) x2 + 4x + 5 = x2 + 2x + 2x + 4 + 1 = x(x + 2) + 2(x + 2) + 1 = (x + 2)(x + 2) + 1 = (x + 2)2 + 1 \(\ne0\) (đpcm)
3x - 6 = 0
3x = 6
x = 6 : 3
x = 2
Vậy x = 2 là nghiệm của đa thức f(x)
-5x + 30 = 0
-5x = -30
x = -30 : (-5)
x = 6
Vậy x = 6 là nghiệm của đa thức trên
(x - 3)(16 - 4x) = 0
- x - 3 = 0
x = 3
- 16 - 4x = 0
4x = 16
x = 16 : 4
x = 4
Vậy x = 3 và x = 4 là nghiệm của đa thức trên
x^2 - 81 = 0
x^2 = 81
x^2 = \(\left(\pm9\right)^2\)
x = \(\pm9\)
Vậy x = 9 và x = -9 là nghiệm của đa thức trên
x^2 + 7x - 8 = 0
x^2 - x + 8x - 8 = 0
x(x - 1) + 8(x - 1) = 0
(x + 8)(x - 1) = 0
- x + 8 = 0
x = -8
- x - 1 = 0
x = 1
Vậy x = -8 và x = 1 là nghiệm của đa thức trên
5x^2 + 9x + 4 = 0
5x^2 + 5x + 4x + 4 = 0
5x(x + 1) + 4(x + 1) = 0
(5x + 4)(x + 1) = 0
- 5x + 4 = 0
5x = -4
x = -4/5
- x + 1 = 0
x = -1
Vậy x = -4/5 và x = -1 là nghiệ của đa thức trên
Chúc bạn học tốt
Lời giải:
a)
$f(x)=3x^3+4x^2-2x-1-2x^3=(3x^3-2x^3)+4x^2-2x-1=x^3+4x^2-2x-1$
b)
$h(x)=f(x)-g(x)=(x^3+4x^2-2x-1)-(x^3+4x^2+3x-2)$
$=(x^3-x^3)+(4x^2-4x^2)-(2x+3x)-1+2=1-5x$
c)
$h(x)=0\Leftrightarrow 1-5x=0\Leftrightarrow x=\frac{1}{5}$
Vậy $x=\frac{1}{5}$ là nghiệm của $h(x)$
a)\(G\left(x\right)=\left(x+2\right)\left(x-1\right)\left(x+\frac{1}{3}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\x=1\\x=\frac{-1}{3}\end{matrix}\right.\)
b)\(H\left(x\right)=3x^3+3x^2+x^2+x+x+1=0\)
\(H\left(x\right)=\left(x+1\right)\left(3x^2+x+1\right)=0\)
Vì \(3x^2+x+1=0\) vô nghiệm nên x=-1.