Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: a) x = 1 là nghiệm của đa thức f(x)
b) x = -1 là nghiệm của đa thức g(x)
c) x = 1 là nghiệm của đa thức h(x)
Câu 2: Số 1 là ngiệm của đa thức f(x)
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
Bài làm
1) I = x.( 2 - x ) + 3( x - 2 )
Để đa thức trên có nghiệm
=> x.( 2 - x ) + 3( x - 2 ) = 0
=> x( 2 - x ) - 3( 2 - x ) = 0
=> ( 2 - x )( x - 3 ) = 0
=> \(\orbr{\begin{cases}2-x=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
Vậy x = 2 hoặc x = 3 là nghiệm phương trình.
2) K = x4 + x3 + x + 1
Để x4 + x3 + x + 1 có nghiệm
=> x4 + x3 + x + 1 = 0
=> x3( x + 1 ) + ( x + 1 ) = 0
=> ( x3 + 1 )( x + 1 ) = 0
=> \(\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x^3=-1\\x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=-1\end{cases}}}\)
Vậy x = -1 là nghiệm phương trình.
3) G = x100 - 8x97
Để phương trình x100 - 8x97 có nghiệm
=> x100 - 8x97 = 0
=> x97( x3 - 8 ) = 0
=> \(\orbr{\begin{cases}x^{97}=0\\x^3-8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x^3=8\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy x = 0 hoặc x = 2 là nghiệm phương trình.
Lọ lại lp 7 tìm tòi thấy bài lm :>>
1, \(I=x\left(2-x\right)+3\left(x-2\right)=0\)
\(2x-x^2+3x-6=0\)
\(-x^2+5x-6=0\)
Nhân tài giải tiếp.
2, \(K=x^4+x^3+x+1=0\)
\(\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-1\end{cases}}\)
3, \(G=x^{100}-8x^{97}=0\)
\(x^{97}\left(x^3-8=0\right)\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)( con thề con ko chép của a Chết)
a, \(E\left(x\right)=-\left(x+1\right)^2+12\)
giả sử đa thức trên có nghiệm khi \(-\left(x+1\right)^2+12=0\)
\(\Leftrightarrow\left(x+1\right)^2=12\Leftrightarrow\left(x+1\right)^2-12=0\)
\(\Leftrightarrow\left(x+1-\sqrt{12}\right)\left(x+1+\sqrt{12}\right)=0\)
Vậy giả sử là đúng nên đa thức trên có nghiệm
b, \(F\left(x\right)=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có : \(\left(x-1\right)^2\ge0\forall x;4>0\)
Vậy đa thức trên ko có nghiệm ( đpcm )
c, \(G\left(x\right)=x^2+6x+18=\left(x+3\right)^2+9\)
Ta có : \(\left(x+3\right)^2\ge0\forall x;9>0\)
Vậy đa thức trên ko có nghiệm ( đpcm )
P/s : ý a mình nghĩ chỉ có thế này thôi \(\left(x+1\right)^2+12\)xem lại đề nha
G (x) = x2 + 2x + 3
= x2 + x + x + 1 + 2
= x.(x + 1) + (x + 1) + 2
= (x + 1).(x + 1) + 2
= (x + 1)2 + 2 \(\ge\)2
Vậy G(x) vô nghiệm.
A (x) = x2 - x + 1
= x2 - 1/2x - 1/2x + 1/4 + 3/4
= x.(x - 1/2) - 1/2.(x - 1/2) + 3/4
= (x - 1/2).(x - 1/2) + 3/4
= (x - 1/2)2 + 3/4 \(\ge\)3/4
Vậy A(x) vô nghiệm.
\(G\left(x\right)=x^2+2x+3\)
\(=x^2+x+x+1+2\)
\(=x.\left(x+1\right)+\left(x+1\right)+2\)
\(=\left(x+1\right).\left(x+1\right)+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy \(G\left(x\right)\) vô nghiệm .
\(A\left(x\right)=x^2-x+1\)
\(=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x.\left(x-\frac{1}{2}\right)-\frac{1}{2}.\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right).\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(A\left(x\right)\) vô nghiệm
Giải
a) 8x - 16 x 2 = 0
<=> 8x - 32 = 0
<=> 8x = 32
<=> x = 4
b) x2 - 81 = 0
<=> x2 = 81
<=> x = -9 hoặc x = 9.
c) 125 + x3 = 0
<=> x3 = -125
<=> x = -5
Đáp số: a) x = 4
b) x = -9 hoặc x = 9
c) x = -5
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
a,x2−2=0⇔x2−(2)2=0⇔(x−2)(x+2)=0⇔[x=2x=−2
Vậy �={−2;2}S={−2;2}
�,�(�−2)=0⇔[�=0�=2b,x(x−2)=0⇔[x=0x=2
Vậy �={0;2}S={0;2}
�,�2−2�=0⇔�(�−2)c,x2−2x=0⇔x(x−2) phương trình như câu b,
�,�(�2+1)⇔[�=0�2+1=0⇔[�=0�2=−1(����)d,x(x2+1)⇔[x=0x2+1=0⇔[x=0x2=−1(voli)( voli là vô lí )
Vậy �={0}S={0}