Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: cho -6x+5=0
⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)
vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)
b: cho x2-2x=0 ⇔ x(x-2)
⇒ x=0 / x-2=0 ⇒ x=0/2
Vậy nghiệm của đa thức là :0 hoặc 2
d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)
⇒\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức là 1 hoặc 3
f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0
⇒\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)
Xin lỗi mình không có thời gian làm hết
a) B(x)=\(4x^5\) -\(2x^4\) +\(3x^3\) -\(2x^2\) +\(4x\) +\(\dfrac{-1}{2}\)
b) C(x)=\(2x^4-x^3+\dfrac{1}{2}+4x\)
a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0
nên x + 1/2 = 0 hoặc x-3 = 0
vậy x = -1/2 và x = 3
Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3
b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0
Vậy x = 0 hoặc x = 1
Đa thức D(x) có 2 nghiệm là x1= 0 và x2 = 1
c, Thay E(x) = 0
nên x3 + 8 = 0 => x3 = -8 => x = -2
Vậy đa thức E(x) có 1 nghiệm là x = -2
d, Thay F(x) = 0 nên 2x - 5 + (x-17) = 0
=> 2x - 5 + x - 17 = 0
=> 3x -22 = 0
=> 3x = 22
x = 22/3
Vậy đa thức F(x) có 1 nghiệm là x = 22/3
e, Thay C(x) = 0 nên x2 - 9 = 0
x2 = 9 => x = 3 hoặc x = -3
Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3
f, Thay A(x) = 0 nên x2 - 4x = 0
=> x.(x - 4) = 0
=> x = 0 và x = 4
Vậy đa thức A(x) có 2 nghiệm là x1=0 và x2 = 4
g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0
Vậy 2x + 4 = 0 và 7-14x =0
=> x = -2 và x = 1/2
Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2
h, G(x) = 0 nên (3x-5) - (18-6x) = 0
=> 3x - 5 - 18 + 6x = 0
=> 9x - 23 = 0
=> 9x = 23
x = 23/9
Vậy đa thức này có 1 nghiệm là x = 23/9
a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)
B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)
Vậy nghiệm của B(x) là -1/2 và 3
b) D(x) = \(x^2-x\)
D(x) = 0 <=> \(x^2-x=0\)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy nghiệm của D(x) là 0 và 1
c) E(x) = \(x^3+8\)
E(x) = 0 <=> x3 + 8 = 0
<=> x3 = -8
<=> x3 = -23
<=> x = 3
Vậy nghiệm của E(x) là 3
d) F(x) = 2x - 5 + ( x - 17 )
F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0
<=> 2x + x + ( -5 - 17 ) = 0
<=> 3x - 22 = 0
<=> 3x = 22
<=> x = 22/3
Vậy nghiệm của F(x) là 22/3
f) A(x) = x2 - 4x
A(x) = 0 <=> x2 - 4x = 0
<=> x( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy nghiệm của A(x) là 0 và 4
g) H(x) = ( 2x + 4 )( 7 - 14x )
H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )
<=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
Vậy nghiệm của H(x) là -2 và 1/2
h) G(x) = ( 3x - 5 ) - ( 18 - 6x )
G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0
<=> 3x - 5 - 18 + 6x = 0
<=> 3x - 23 = 0
<=> 3x = 23
<=> x = 23/3
Vậy nghiệm của G(x) là 23/3
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)
Vậy nghiệm của M( x ) là \(\frac{1}{4}\)
b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH
TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)
TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)
c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH
TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)
\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4