Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(P\left(x\right)=0\)
\(\Rightarrow x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy P(x) có 2 nghiệm là 0 và -1
P(x)=0 hay x2+x=0
x2 =0-x
x2 =-x
vậy đa thức này vô số nghiệm với mọi x lớn hơn hoặc bằng 0
Do x=-1 là nghiệm của đa thức, nên:
f(-1)=a.(-1)2+b.(-1)-2=0\(\Rightarrow\)a-b-2=0\(\Rightarrow a-b=2\)
1)P=5x^2-3xy+7y^2+6x^2-8xy+9y^2
P=(5x^2+6x^2)+(-3xy-8xy)+(7y^2+9y^2)
P=11x^2-11xy+16y^2
Q=5x2 – 3xy + 7y2 -6x^2+8xy-9y^2
Q=(5x^2-6x^2)+(-3xy+8xy)+(7y^2-9y^2)
Q=-1x^2+5xy-2y^2
2)M=11x^2-11xy+16y^2+x^2-5xy+2y^2
M=(11x^2+x^2)+(-11xy-5xy)+(16y^2+2y^2)
M=12x^2-16xy+18y^2
thay x=-1 và y=-2 vàoM
ta có :M=12*-1^2-16*-1*-2+18*-2^2
M=12*1-16*2+18*4
M=12-32+72
M=52
3)T=12x^2-16xy+18y^2-3x^2+16xy+14y^2
T=(12x^2-3x^2)+(-16xy+16xy)+(18y^2+14y^2)
T=9x^2+32y^2
nếu :th1:x<0=>x^2>0 hoặc =0
y<0=>y^2>0 hoặc =0
\(=>\)T>0 hoặc =0
th2:x>0 hoặc =0=>x^2>0 hoặc =0
y>0 hoặc =0=>y^2>0 hoặc =0
\(=>\)T>0 hoặc =0
Vậy trong mọi trường hợp đa thức T luôn nhận giá trị không âm khi x và y thuộc tập hợp Z
đây là ời giải cr mk
1 cho A(x)=0
\(\Leftrightarrow2\left(-x+5\right)-\frac{3}{2}\left(x-4\right)=0\)\(0\)
\(\Leftrightarrow-2x+10-\frac{3}{2}x+4\)\(=0\)
\(\Leftrightarrow\left(-2x-\frac{3}{2}x\right)+\left(10+4\right)\)\(=0\)
\(\Leftrightarrow\frac{-7}{2}x+14\)\(=0\)
\(\Leftrightarrow\frac{-7}{2}x=-14\)
\(\Leftrightarrow x=4\)
Vậy...
2 .Cho B(x)=0
\(\Leftrightarrow-4x^2+9\)\(=0\)
\(\Leftrightarrow-4x^2=-9\)
\(\Leftrightarrow x^2=\frac{9}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}\)
Vậy...
3. Cho C(x)=0
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy...
k cho mk nha
1.\(\frac{2\left(-x+5\right)-3}{2\left(X-4\right)}=0\) (đkxđ x khác 4)
\(\Rightarrow2\left(-x+5\right)-3=0\)
\(\Rightarrow-2x+10-3=0\)
\(\Rightarrow-2x=-7\)
\(\Rightarrow x=\frac{7}{2}\)
2. \(-4x^2+9=0\)
\(\Rightarrow4x^2-9=0\)
\(\Rightarrow4x^2=9\)
\(\Rightarrow x^2=\frac{9}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{2}\end{cases}}\)
3. \(x^3+4x=0\)
\(\Rightarrow x\left(x^2+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+4=0\end{cases}}\)mà x^2+4 >0
\(\Rightarrow x=0\)
Haiz, dễ thế mà!
Q(x)=x4-2x2+3x+1+2x2
Q(x)=x4+(2x2-2x2)+3x+1
Q(x)=x4+3x+1
Q(x) = x4-2x2+3x+1+2x2
Q(x) =x4+(2x2-2x2)+3x+1
Q(x)=x4+3x+1
Chúc bạn học tốt!!!
a) \(P\left(x\right)=3x^5+5x-4x^4-2x^3+6+4x^2\)
\(P\left(x\right)=3x^5-4x^4-2x^3+5x+6+4\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)+\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5+2x^4-2x^3+3x^2-x\)
\(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2-4x+6\)
\(P\left(x\right)-Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5-2x^4+2x^3-3x^2+x\)
\(P\left(x\right)-Q\left(x\right)=2x^5-6x^4+x^2+6x+6\)
P/S : Câu trên mình sắp xếp sai phần P(x) nha. Tại nhìn nhìn 4x^2 mà tưởng là 4.
\(p=\frac{1}{3}x^2y+xy^2-xy+\frac{1}{2}xy^2-5xy-\frac{1}{3}x^2y\)
\(p=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)-\left(xy-5xy\right)\)
\(p=\frac{3}{2}xy^2-6xy\)
thay x = 0,5 và y = 1 vào P
\(\Rightarrow\)\(=\frac{3}{2}.0,5.1^2-6.0,5.1\)
\(=\frac{3}{2}.0,5-6.0,5\)
\(=\left(\frac{3}{2}-6\right).0,5\)
\(=\frac{-9}{2}.0,5\)
\(=\frac{-9}{4}\)
~hok tốt ~
F(x) =0 khi x2 2 +x=0
<=> x(x.2)+x.1=0
<=> x(2x+1)=0
th1: x=0
th2: 2x+1=0
<=>2x=1
<=>x=1/2
vậy No cua da thuc da cho la x thuộc {0;1/2}
cho mk nha
xinh lỗi mình nhầm đề
F(x) = x2 + x nhé !