Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
\(\frac{2n^2+5n-1}{2n-1}=\frac{2n^2-n+6n-3+2}{2n-1}=\frac{n\left(2n-1\right)+3\left(2n-1\right)+2}{2n-1}=n+3+\frac{2}{2n-1}\)
Để \(2n^2+5n-1⋮2n-1\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
<=>2n thuộc {2;0;3;-1}
<=>n thuộc {1;0;3/2;-1/2}
Mà n thuộc Z
=> n thuộc {1;0}
bài 2 sửa đề x5-5x3+4x
Ta có: \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left(x^4-x^2-4x^2+4\right)=x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]\)
\(=x\left(x^2-4\right)\left(x^2-1\right)=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
Vì x(x-1)(x+1)(x+2)(x-2) là tích 5 số nguyên liên tiếp nên tích này chia hết cho 3,5,8
Mà (3,5,8)=1
=>\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)⋮3.5.8=120\)
=>đpcm
Ta có:
\(2n^2-n+2\)
\(=2n^2+n-2n-1+3\)
\(=n.\left(2n+1\right)-\left(2n+1\right)+3\)
\(\Rightarrow n.\left(2n+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow2n+1⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯC\left(3\right).\)
\(\Rightarrow2n+1\in\left\{1;-1;3;-3\right\}.\)
Có 4 trường hợp:
\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=-1\\2n+1=3\\2n+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=-2\\2n=2\\2n=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=-1\\n=1\\n=-2\end{matrix}\right.\)
Vậy \(n\in\left\{0;-1;1;-2\right\}.\)
Chúc bạn học tốt!
Ta có : \(2n^2+5n-1\)
\(=2n^2-n+6n-3+2\)
\(=n\left(2n-1\right)+3\left(2n-1\right)+2\)
\(=\left(n+3\right)\left(2n-1\right)+2\)
Để \(2n^2+5n-1⋮2n-1\)
\(\Leftrightarrow\left(n+3\right)\left(2n-1\right)+2⋮2n-1\)
\(\Leftrightarrow2⋮2n-1\)
Do \(n\in Z\Rightarrow2n-1\in Z\)
\(\Rightarrow2n-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau :
\(2n-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(2n\) | \(2\) | \(0\) | \(3\) | \(-1\) |
\(n\) | \(1\) | \(0\) | \(\dfrac{3}{2}\left(L\right)\) | \(-\dfrac{1}{2}\left(L\right)\) |
Vậy \(n\in\left\{0;1\right\}\Leftrightarrow2n^2+5n-1⋮2n-1\)
Ta có:
2n2 + 5n + 4 = 2n2 + n + 4n + 2 + 2
= (2n + 1)(n + 2) + 2
=> Để 2n2 + 5n + 4 chia hết cho 2n + 1 thì 2n + 1 € Ư(2):
* 2n + 1 = 1
<=> n = 0 (n)
* 2n + 1 = -1
<=> n = -1 (n)
* 2n + 1 = 2
<=> n = 1/2 (l)
* 2n + 1 = -2
<=> n = -3/2 (l)
Vậy với n € Z thì 2n2 + 5n + 4 chia hết cho 2n + 1 khi n = {0; -1}
Ta co:
2n2 + 5n + 4
= 2n2 + n + 4n + 4
= n(2n + 1) + 4(2n + 1)
= (2n + 1)(n + 4)
Vậy 2n2 + 5n + 4 chia hết cho 2n + 1 (=n + 4)
Ta có: 2n2+5n-1
=(2n2+2n+2n)+n-1
=2n(n+2)+n-1
=(2n-1)(2n+2)
Vì 2n-1chia hết cho 2n-1 nên suy ra (2n-1)(2n+2) chia hết cho 2n-1
Vậy 2n2+5n-1 chia hết cho 2n-1