K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;-1;5;-5;13;-13;65;-65\right\}\)

hay \(n\in\left\{0;2;-2;8;-8\right\}\)

a: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)

=>n(n+1)=0 hoặc (n+2)(n-1)=0

hay \(n\in\left\{0;-1;-2;1\right\}\)

26 tháng 9 2018

a) ta có : \(\dfrac{n^3-3n^2-3n-1}{n^2+n+1}=\dfrac{n^3+n^2+n-4n^2-4n-4+3}{n^2+n+1}\)

\(=\dfrac{n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3}{n^2+n+1}=n-4+\dfrac{3}{n^2+n+1}\)

\(\Rightarrow n^2+n+1\) là ước của \(3\) \(\Rightarrow n^2+n+1\in\left\{\pm1;\pm3\right\}\)

giải tiếp nha .

câu b bn lm tương tự cho quen

b: \(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;-1;5;-5;13;-13;65;-65\right\}\)

hay \(n\in\left\{0;2;-2;8;-8\right\}\)

a: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)

=>n(n+1)=0 hoặc (n+2)(n-1)=0

hay \(n\in\left\{0;-1;-2;1\right\}\)

15 tháng 12 2016

làm câu

30 tháng 4 2020

Bạn xem lại đề! Theo mình mẫu số =x2+2

30 tháng 4 2020

Mình nghĩ sửa: \(B=\frac{n^4+3n^3+2n^2+6n-2}{n^2+2}\)

11 tháng 1 2016

Vì A, B, C thuộc Z nên tử chia hết cho mẫu, đặt phép chia ra

18 tháng 7 2018

có ai giúp mik với

17 tháng 10 2018

????? đề j kì zể???

21 tháng 10 2022

a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)

\(=-n^2+5n\)

Cái này nếu n=1 thì ko thỏa mãn nha bạn

b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)

\(=49n+55\)

Nếu n là số lẻ thì 49n+55 chia hết cho 2

Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn

b: \(\Leftrightarrow n^3-8+6⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)