K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Do phân số \(\frac{n+9}{n-6}\)nguyên dương

=> n + 9 chia hết cho n - 6

=> n - 6 + 15 chia hết cho n - 6

Do n - 6 chia hết cho n - 6 => 15 chia hết cho n - 6

Mà n > 6 => n - 6 > 0 => \(n-6=15\)

=> n = 21

Mk nghĩ chỗ điều kiện n < 6 fai sửa thành n > 6 ms đúng đó

2 tháng 4 2018

\(a)\) Để A là phân số thì \(n-3\ne0\)\(\Rightarrow\)\(n\ne3\)

\(b)\) Ta có : 

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để A có giá trị nguyên thì \(4⋮\left(n-3\right)\)\(\Rightarrow\)\(\left(n-3\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Suy ra : 

\(n-3\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(4\)\(2\)\(5\)\(1\)\(7\)\(-1\)

Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\) thì A có giá trị nguyên 

Chúc bạn học tốt ~ 

2 tháng 4 2018

a/Để A là 1 phân số nen n-3 khac 0

Để n-3 khác 0 thì  n khác 3

b/A= n+1/n-3 = n-3+4/n-3 = 1+ 4/n-3

Để A  có giá trị nguyên thì n-3 thuộc U(4)={-1;-2;-4;1;2;4}

ta có bảng

n-3             1                    2                      4                       -1                         -2                         -4

n                 4                   5                       7                        2                         1                           -1

Vậy với n thuộc {4;5;7;2;1;-1}thì A nguyên

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c