Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n3 - 2n + 3n + 3
= n3 - n + 3
= n(n2 - 1)
= n(n - 1)(n + 1) + 3
Để n3 - 2n + 3n + 3 chia hết cho n - 1
=> n(n - 1)(n + 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-2;0;2;4}
a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)
Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4
b) Cho n-1=0 => n=1
Sau đó thay vào biểu thức 10n2+n -10 sẽ tìm ra n=1
Cho mình nha!!! <3
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
a) \(3x^2-3y^2-12x+12y\)
\(=\left(3x^2-3y^2\right)-\left(12x-12y\right)\)
\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-3y-12\right)\)
\(=\left(x-y\right).3.\left(x-y-4\right)\)
b) \(4x^3+4xy^2+8x^2y-16x\)
\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)
\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)
c) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-4\right)\left(x^2-1\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
bài 1:
n+2\(\in\)\(Ư\left(3\right)\)
\(\Rightarrow\left[{}\begin{matrix}n+2=1\\n+2=-1\\n+2=3\\n+2=-3\end{matrix}\right.\rightarrow\left[{}\begin{matrix}n=-1\\n=-3\\n=1\\n=-5\end{matrix}\right.\)
vậy để n3+n2-n+5\(⋮\)n+2 thì n\(\in\left(-1;-3;1;-5\right)\)
b2:
ta có : n3+3n-5=(n2+2)n+(n-5)
để n3+3n-5\(⋮\)n2+2 thì n-5=0
\(\Rightarrow\)n=5
Ta có :\(\frac{n^{3^{ }_{+2n^2-3n+2_{ }}}}{n^2-n}=n+3+\frac{2}{n^2-n}\)Để n^3+2n^2-3n+2 chia hết cho n^2-n thì \(\frac{2}{n^2-n}\)phải là số nguyên => 2n+1\(\in\)Ư(2)=(-2;-1;12).......................................rồi pn lm típ nka, đoạn sau đơn giản r :)) tick cho tớ vs