K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Bài giải:

Để 5n+3 chia hết cho 2n-3

Ta có:

(5n+3)-(2n-3) chia hết cho 2n-3[vì 5n+3 chia hết cho 2n-3 và 2n-3 cũng vậy]

=>2(5n+3)-5(2n-3) chia hết cho 2n-3

=>10n+6-10n-15 chia hết cho 2n-3

=>10n+6-10n+15 chia hết cho 2n-3

=>(10n-10n)+(6+15) chia hết cho 2n-3

=>21 chia hết cho 2n-3

=> 2n-3 là Ư(21) thuộc Z={-7;-3;-1;-21;21;7;3;1}

+)2n-3=-7

2n=-4

n=-2

+)2n-3=-3

2n=0

n=0

+)2n-3=-1

2n=2

n=1

+)2n-3=-21

2n=-18

n=-9

Rồi cứ thế thử tiếp với hết ước của 21 sau đó chọn ra n thuộc Z nhé.

Đúng thì tk nha mng.

14 tháng 8 2018

a)A=(3n+3-5)/n+1

=3-5/(n+1)

14 tháng 8 2018

\(A=\frac{3n-2}{n+1}\inℤ\Leftrightarrow3n-2⋮n+1\)

\(\Rightarrow3n+3-5⋮n+1\)

\(\Rightarrow3\left(n+1\right)-5⋮n+1\)

      \(3\left(n+1\right)⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{0;2;-4;6\right\}\)

10 tháng 3 2016

làm ơn giúp mình với

21 tháng 3 2020

Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Đặt UCLN(2n+7, 5n+2)=d

=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)

5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)

Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)

=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)

Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)

Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)

15 tháng 2 2018

a) Để phân số có giá trị là số nguyên thì \(\left(n+7\right)⋮\left(2n+3\right)\)

\(\Rightarrow\left(2n+14\right)⋮\left(2n+3\right)\)

\(\Rightarrow\left[\left(2n+3\right)+11\right]⋮\left(2n+3\right)\)

\(\Rightarrow11⋮\left(2n+3\right)\)

\(\Rightarrow2n+3\inƯ\left(11\right)=\left\{-11; -1; 1; 11\right\}\)

\(\Rightarrow n\in\left\{-7; -2; -1; 4\right\}\)

b) Để phân số là số nguyên thì \(\left(3n-4\right)⋮\left(5n+2\right)\)

\(\Rightarrow\left(15n-20\right)⋮\left(5n+2\right)\)

\(\Rightarrow\left[3\left(5n+2\right)-26\right]⋮\left(5n+2\right)\)

\(\Rightarrow26⋮\left(5n+2\right)\)

\(\Rightarrow\left(5n+2\right)\inƯ\left(26\right)=\left\{-26;-13;-2;-1; 1; 2; 13; 26\right\}\)

Mà: \(n\in Z\Rightarrow5n+2\in\left\{-13;2\right\}\)

\(\Rightarrow n\in\left\{-3; 0\right\}\)

15 tháng 2 2018

\(a,\) \(\frac{n+7}{2n+3}\) có giá trị nguyên

\(\Leftrightarrow\) \(n+7\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2\left(n+7\right)\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2n+14\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2n+3+11\) \(⋮\) \(2n+3\)

           \(2n+3\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(11\) \(⋮\) \(2n+3\)

\(\Rightarrow\) \(2n+3\inƯ\left(11\right)\) 

\(\Rightarrow\) \(2n+3\in\left\{-1;-11;1;11\right\}\)

\(\Rightarrow\) \(2n\in\left\{-4;-14;-2;8\right\}\)

\(\Rightarrow\) \(n\in\left\{-2;-7;-1;4\right\}\)

b, nghĩ đã