Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Chỉ là chia đa thức thôi mà!)
Anh giải câu b thôi, mấy câu còn lại tự làm nha.
\(2n^3+n^2+7n+1=\left(2n-1\right)\left(n^2+n+4\right)+5\)
Suy ra \(\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để vế trái nguyên thì \(2n-1\) là ước của \(5\). Giải được \(n=-2,0,1,3\)
2n² - n + 2. │ 2n + 1
2n² + n....... ├------------
------------------ I n - 1
.......-2n + 2
.......-2n - 1
_____________
3
Để chia hết thì: 3 phai chia hết cho ( 2n + 1)
hay (2n + 1) la ước của 3
Ư(3) = {±1 ; ±3}
______________________________
+) 2n + 1 = 1 <=> n = 0
+) 2n + 1 = -1 <=> n = -1
+) 2n + 1 = 3 <=> n = 1
+) 2n + 1 = -3 <=> n = -2
Vậy n ∈{0;-2 ; ±1}
tk cho mk nha $_$
2n^2-n+2 chia hết cho 2n+1
<=> (2n^2+n)-(2n+1)+3 chia hết cho 2n+1
<=> (2n+1).(n-1)+3 chia hết cho 2n+1
<=> 3 chia hết cho 2n+1 [ vì (2n+1).(n-1) chia hết cho 2n+1 ]
Đến đó bạn dùng quan hệ ước bội mà giải nha
Tk mk nha
ta có:
\(A=2n^2-n+2=2n^2+n-2n-1+3\)
\(=n\left(2n+1\right)-\left(2n+1\right)+3\)
\(=\left(n-1\right)\left(2n+1\right)+3\)
để \(A⋮2n+1\)thì\(3⋮2n+1\)
\(\Leftrightarrow2n+1\in U_{\left(3\right)}=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow2n\in\left\{-2;0;-4;2\right\}\)
\(\Rightarrow n\in\left\{-1;0;-2;1\right\}\)
VẬY...
\(2n^2-n+2⋮2n+1\)
\(2n^2+n-2n-1+3⋮2n+1\)
\(n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)
\(\left(2n+1\right)\left(n-1\right)+3⋮2n+1\)
Vì \(\left(2n+1\right)\left(n-1\right)⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow n\in\left\{0;1;-1;-2\right\}\)
Vậy.........
Ta có: \(2n^2-n+2=2n^2+n-2n-1+3\)
\(=n\left(2n+1\right)-\left(2n+1\right)+3\)
\(\left(n-1\right)\left(2n+1\right)+3\)
Để \(2n^2-n+2⋮2n+1\) thì \(3⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow2n=\left\{0;-2;2;-4\right\}\)
\(\Rightarrow n=\left\{0;-1;-2;1\right\}\)
\(\frac{n^3-n^2+2n+7}{n^2+1}=\frac{\left(n^3+n\right)-\left(n^2+1\right)+n+8}{n^2+1}=\frac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}\)
\(n-1+\frac{n+8}{n^2+1}\)
Do \(n^3-n^2+2n+7⋮n^2+1\) \(\Rightarrow\frac{n^3-n^2+2n+7}{n^2+1}\in Z\)
\(\Rightarrow n-1+\frac{n+8}{n^2+1}\in Z\)
\(\Rightarrow n=-8\)
TÌM n thuộc Z để 2n2 – n + 2 chia hết 2n + 1.
Phép chia hết khi : 2n + 1 có giá trị là U(3) ={ ±1; ±3}
Vậy : n = 0, – 1, 1, – 2