Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
-11 là bội của n-1
=> -11 chia hết cho n-1
=> n-1 thuộc Ư(-11)
n-1 | n |
1 | 2 |
-1 | 0 |
11 | 12 |
-11 | -10 |
KL: n thuộc......................
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) n+2 chia hết cho n-1
n+2=n-1+3 chia hết cho n-1
=> 3 chia hết cho n-1 hay n-1\(\in\)Ư(3)={-1;1;-3;3}
n\(\in\){0;2;-2;4}
b) 2n-3 là bội của n+4 nghĩa là 2n-3 chia hết cho n+4
2n-3=2(n+4)-11 chia hết cho n+4
=> 11 chia hết cho n+4 hay n+4\(\in\)Ư(11)={-1;1;-11;11}
n\(\in\){-5;-3;-15;7}
c) n-7 chia hết cho 2n+3
n-7=2(n-7) chia hết cho 2n+3
2(n-7)=2n+3-17 chia hết cho 2n+3
=> 17 chia hết cho 2n+3 hay 2n+3\(\in\)Ư(17)={-1;1;-17;17}
n\(\in\){-2;-1;-10;7}
d) n+5 chia hết cho n-2
n+5=n-2+7 chia hết cho n-2
=> 7 chia hết cho n-2 hay n-2\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){1;3;-5;9}
e) n2 -2 là bội của n+3
n2-2=n(n+3)-3n-2=n(n+3)-3(n+3)+7 chia hết cho n-2
n(n+3) và 3(n+3) cùng chia hết cho n+3
=> 7 chia hết cho n+3 hay n+3\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){-4;-2;-10;4}
f) 3n-13 là ước của n-2 nghĩa là n-2 chia hết cho 3n-13
n-2 chia hết cho 3n-13 => 3(n-2) chia hết cho 3n-13
3(n-2)=3n-13+7 chia hết cho 3n-13
=> 7 chia hết cho 3n-13 hay 3n-13\(\in\)Ư(7)={-1;1-7;7}
n\(\in\){4;2;}
g) In+19I + In+5I + In+2011I = 4n
n+19+n+5+n+2011=-4n
TH1: 3n+2035=-4n => n=(-2035) :7 (loại)
TH2: n+19+n+5+n+2011=4n
3n+2035=4n => n=2035
Để \(n^2+2n+7⋮n+2\)
\(\Rightarrow n\left(n+2\right)+7⋮n+2\)
Vì \(n\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)\Rightarrow n+2\in\left\{1;7\right\}\Rightarrow n\in\left\{-1;5\right\}\)
Để \(n^2+1⋮n-1\)
=> \(n^2-1+2⋮n-1\)
\(\Rightarrow\left(n^2-n+n-1\right)+2⋮n-1\)
\(\Rightarrow\left[n\left(n-1\right)+\left(n-1\right)\right]+2⋮n-1\)
=> (n - 1)(n + 1) + 2\(⋮n-1\)
Vì (n - 1)(n + 1) \(⋮n-1\)
=> 2\(2⋮n-1\Rightarrow n-1\inƯ\left(2\right)\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\)
Để \(n^2+2n+6⋮n+4\)
=> \(n^2+4n-2n-8+14⋮n+4\)
=> \(n\left(n+4\right)-2\left(n+4\right)+14⋮n+4\)
=> \(\left(n-2\right)\left(n+4\right)+14⋮n+4\)
Vì \(\left(n-2\right)\left(n+4\right)⋮n+4\)
=> \(14⋮n+4\Rightarrow n+4\inƯ\left(14\right)\Rightarrow n+4\in\left\{1;2;7;14\right\}\Rightarrow n\in\left\{-3;-2;3;10\right\}\)
Để n2 + n + 1 \(⋮n+1\)
=> \(n\left(n+1\right)+1⋮n+1\)
Vì \(n\left(n+1\right)⋮n+1\)
=> \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)\Rightarrow n+1=1\Rightarrow n=0\)
a) \(n+1\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(n-1+2\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
nên \(2\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng sau:
\(n-1\) \(-2\) \(-1\) \(1\) \(2\)
\(n\) \(-1\) \(0\) \(2\) \(3\)
Vậy..