Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 3 \(⋮\)1 - n ( đ/k:1 - n \(\ne\)0)
-1 ( n + 3 ) \(⋮\)1 - n
-n + ( -3 ) \(⋮\)1 - n
1 - n + ( -2 ) \(⋮\)1 - n
\(\Rightarrow\)2 \(⋮\)1 - n
\(\Rightarrow\)1 - n \(\in\)Ư( 2 )
Ta có bảng sau:
1-n | 1 | -1 | 2 | -2 |
n | 0(TM) | 2(TM) | -1(TM) | 3(TM) |
Vậy n \(\in\){ -1 ; 0 ; 2 ; 3 }
b) n2 + 5 \(⋮\)n + 3
n2 + 9 - 4 \(⋮\) n+ 3
(n + 3).(n - 3) - 4 \(⋮\)n + 3
Vì n + 3 \(⋮\)n + 3
\(\Rightarrow\)( n + 3 ).(n - 3) \(⋮\)n + 3
Mà ( n + 3 ).( n - 3 ) - 4 \(⋮\)n + 3
\(\Rightarrow\)4 \(⋮\)n + 3
Làm tiếp như ở phần a nhé
c) 2n + 6 \(⋮\)5
\(\Rightarrow\)2n + 6 \(\in\)B ( 5 )
2n + 6 \(\in\){ 0 ; 5 ; 10 ; 15 ;20 ;...}
2n \(\in\){ -6 ; 4 ;14 ; ... }
n \(\in\){ -3 ; 2 ; 7 ; 10 ;...}\
d) 5n + 8 \(⋮\)11
Làm như câu c bn nhé
a, 3n+2 chia hết n-1
=> 3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=> 5 chia hết cho n-1
Lại có n thuộc N
=> n-1 thuộc Ư(5)=1,-1,5,-5
=> n=2,0,6,-4
a) 3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1 = 5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
n-1=-1=>n=0 = n-1=1=>n=2
n-1=-5=>n=-4 = n-1=5=>n=6
a, n + 8 chia hết cho n + 1
=> n + 1 + 7 chia hết cho n + 1
=> 7 chia hết cho n + 1
=> n + 1 \(\in\)Ư ( 7 )
Mà Ư(7) = { 1 ; 7 }
+> n + 1 = 1 => n = 0
+> n + 1 = 7 => n = 6
b,
2n + 11 chia hết cho n - 3
=> 2n - 6 + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\)Ư ( 17 )
Mà Ư(17) = { 1 ; 17 }
+> n - 3 = 1 => n = 4
+> n - 3 = 17 => n = 20
c,
4n - 3 chia hết cho 2n + 1
=> 4n + 2 - 5 chia hết cho 2n + 1
=> 5 chia hết cho 2n + 1
=> 2n + 1 \(\in\)Ư ( 5 )
Mà Ư(5) = { 1 ; 5 }
+> 2n + 1 = 1 => n = 0
+> 2n + 1 = 5 => n = 2
a, \(3n+2⋮n-1\)
\(\Rightarrow3n-3+5⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
Vì : \(3\left(n-1\right)⋮n-1\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;5\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=5\Rightarrow n=5+1\Rightarrow n=6\)
Vậy : \(n\in\left\{2;6\right\}\) thì \(3n+2⋮n-1\)
b, \(n+8⋮n+3\)
Vì : \(n+3⋮n+3\)
\(\Rightarrow\left(n+8\right)-\left(n+3\right)⋮n+3\)
\(\Rightarrow n+8-n-3⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
Mà : \(n+3\ge3\)
\(\Rightarrow n+3=5\Rightarrow n=5-3\Rightarrow n=2\)
Vậy n = 2 thì : \(n+8⋮n+3\)
c, \(n+6⋮n-1\)
Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+6\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+6-n+1⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{1;7\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=7\Rightarrow n=7+1\Rightarrow n=8\)
Vậy \(n\in\left\{2;8\right\}\) thì \(n+6⋮n-1\)
d, \(4n-5⋮2n-1\)
\(\Rightarrow4n-2-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
Vì : \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\)
+) \(2n-1=1\Rightarrow2n=1+1\Rightarrow2n=2\Rightarrow n=2\div2\Rightarrow n=1\)
+) \(2n-1=3\Rightarrow2n=3+1\Rightarrow2n=4\Rightarrow n=4\div2\Rightarrow n=2\)
Vậy \(n\in\left\{1;2\right\}\) thì \(4n-5⋮2n-1\)
a) Ta có : 3n+6 chia hết cho 3n+6
=>2(3n+6) chia hết cho 3n+6
=> 6n+3-6n+12 chia hết cho 3n+6
-9 chia hết cho 3n+6
=> 3n+6 thuộc Ư(-9)={1,-1,3,-3,9,-9}
3n={-5,-7,-3,-9,3,-15}
n={-1,-3,1,-5}
a) n không có giá trị
b) n = 2
c) n= 6 ;8
d)n khong có giá trị
e) n= 3
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
Yễn Nguyễn ơi! Giúp mình với!!:
8-3n chia hết cho n+1.
Yễn Nguyễn có làm được ko?
n+3 chia hết cho n
=> 3 chia hết cho n ( vì n đã chia hết cho n)
=> n \(\inƯ\left(3\right)\)
=> n \(\in\left\{-1;-3;1;3\right\}\)
n+8 chia hết cho n
=> 8 chia hết cho n (vì n đã chia hết cho n)
=> n \(\inƯ\left(8\right)\)
=> n \(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
n+3 chia hết cho n+1
=> n+2 chia hết cho n
=> 2 chia hết cho n(vì n đã chia hết cho n)
=> n \(\inƯ\left(2\right)\)
=> n \(\in\left\{-2;-1;1;2\right\}\)