Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n^2+3n+6}{n+3}=\frac{n^2+3n}{n+3}+\frac{6}{n+3}\)
\(=\frac{n\left(n+3\right)}{n+3}+\frac{6}{n+3}\)
\(=n+\frac{6}{n+3}\)
Để thỏa đề bài thì 6 phải chia hết cho n + 3
\(\Rightarrow n+3\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
n + 3 = 1
n = -2 ( loại )
n + 3 = 2
n = -1 ( loại )
n + 3 = 3
n = 0 ( loại )
n + 3 = 6
n + 3 ( nhận )
Vậy n = 3 thì thỏa đề
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
Mà (n - 1)(n + 1) chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 \(\in\) Ư(4) = {-1;1;-2;2;-4;4}
=> n \(\in\) {0;2;-1;3;-3;5}
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho n + 3
=>13 chia hết cho n + 3 (Vì n(n + 3) chia hết cho n + 3)
=> n + 3 thuộc {1; -1; 13; -13}
=> n thuộc {-2; -4; 10; -16}
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
\(n^2+3n+6=n\left(n+3\right)+6⋮n+3\Leftrightarrow6⋮n+3\Rightarrow n+3=3\text{ hoặc 6 }\left(\text{vì: }n\inℕ\text{ nên:}n+3\ge3\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=3\end{cases}}\)
cảm ơn shitbo nha