K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Đặt \(n^2+2006=a^2\)(a \(\in\)Z)

\(\iff\)\(a^2-n^2=2006\)

\(\iff\)\(\left(a-n\right).\left(a+n\right)=2006\left(1\right)\)

Nếu a,n khác tính chẵn ,lẻ thì VT(1) là số lẻ

\(\implies\)không thỏa mãn

Nếu a,n cùng tính chẵn ,lẻ thì (a-n) chia hết cho 2 ; (a+n) chia hết cho 2 nên VT(1) chia hết cho 4 ;VP(1) không chia hết cho 4

\(\implies\) không thỏa mãn 

Vậy không tồn tại n để \(n^2+2006\) là số chính phương

23 tháng 4 2018

1)7744=66 x 66

2)40,90 

3)Bó tay

3 tháng 1 2019

i don't knoư

4 tháng 1 2018

10 ≤ n ≤ 99 => 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

=> n ∈{12;24;40;60;84}

=> 3n+1∈{37;73;121;181;253}

=> n = 40

24 tháng 1 2020

Gọi d là ước của \(\left(n+15\right)\)và \(\left(n+72\right)\left(d\in N^{\times}\right)\)

\(\Rightarrow\left(n+15\right)\)chia hết cho d và \(\left(n+72\right)\) chi hết cho d.

\(\Rightarrow\left(n+72\right)-\left(n+15\right)\)chia hết cho d.

\(\Rightarrow57\)chia hết cho d.

\(\Rightarrow d=\left\{1;3;19;57\right\}\)

Để \(\left(n+15\right)\)và \(\left(n+72\right)\) là nguyên tố cùng nhau thì n khác dạng \(19k+15\)

\(\Rightarrow\)Có vô số giá trị của n

21 tháng 11 2015

đọc xong đề bài chắc chết mất 

17 tháng 1 2016

trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!

10 tháng 11 2015

x chia hết cho 4;9

=>x thuộc BC(4;9)

BCNN(4;9)=36

=> n thuộc B(36)

=> n thuộc {0;36;72;108;144;180;216;252;288;324;360;396;432;468;504;...}

mà 213<x<490

và x là SCP

nên x =324

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản