Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
a) Tìm \(n\in N\), biết:
\(3.5^{2n+1}-3.25^n=300\)
b) Tìm x để:
\(f\left(x\right)=6x^{^{ }4}-2x^3+5=5\)
a)\(3\cdot5^{2n+1}-3\cdot25^n=300\)
\(3\cdot5^{2n}\cdot5-3\cdot25^n=300\)
\(15\cdot25^n-3\cdot25^n=300\)
\(25^n\cdot12=300\)
\(25^n=25\)
\(\Rightarrow n=1\)
b)\(f\left(x\right)=6x^4-2x^3+5=5\)
\(6x^4-2x^3=0\)
\(6x^4=2x^3\)
\(3x^4=x^3\)
\(3x^4-x^3=0\)
\(x^3\left(3x-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc 3x-1=0
\(\Rightarrow x=0,3x=1\)
\(\Rightarrow x=0,x=\frac{1}{3}\)(loại vì \(x\in N\))
Vậy x=0
a) (5x +1)^2= 6^2/7^2
=> 5x+1= 6/7 hoặc -6/7 ( vì cả hai đều có mũ hai nên có thể bỏ đi - cái này mình giải thích cho bạn hỉu thui, đừng chép vào vở nhé)
Đến đây thì bạn cứ tính theo cách tìm x thông thường, cuối cùng thì ra số âm nên không có kết quả x thuộc N
a: \(=3^2\cdot3^3\cdot3^{-4}\cdot3^2=3^{2+3-4+2}=3^3\)
b: \(=2^2\cdot2^5:\left(2^3\cdot\dfrac{1}{2^4}\right)=2^7:\dfrac{1}{2}=2^8\)
c: \(=9\cdot32\cdot\dfrac{4}{9}=128=2^7\)
d: \(=\dfrac{1}{27}\cdot3^4=3^1\)
a, ta có \(\frac{n+5}{n-2}\) =\(\frac{n-2+7}{n-2}\)=1+\(\frac{7}{n-2}\)
để \(\frac{n+5}{n-2}\)=>\(\frac{7}{n-2}\)
ta có : 7 \(\varepsilon\)ưc của n-2
ư(7)=+1;+7;-1;-7
=> n-2=1
n=3
n-2=7
n=9
n-2=-1
n=1
n-2=-7
n=-5
chúc bạn học tốt
\(\left(\frac{1}{3}\right)^{2n-1}=3^5\Leftrightarrow\frac{1}{3^{2n-1}}=3^5\Leftrightarrow3^{1-2n}=3^5\Leftrightarrow1-2n=5\Leftrightarrow n=-2\)
Vì n thuộc N nên không có số n thỏa mãn đề bài