Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(32^n=64^5\)
\(=>\left(2^5\right)^n=\left(2^6\right)^5\)
\(2^{5.n}=2^{5.6}\)
\(=>n=6\)
b)\(16^n=64^8\)
\(=>\left(4^2\right)^n=\left(4^3\right)^8\)
\(4^{2.n}=4^{3.8}\)
\(=>2.n=3.8\)
\(2.n=24\)
\(n=24:2=12\)
chúc bạn học tốt nha
\(a,2^n=16\Leftrightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b,4^n=4096\Rightarrow4^n=4^6\Leftrightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Leftrightarrow n=6\)
\(c,6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Leftrightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Leftrightarrow n=6\)
\(a.\) \(2^n=16\Rightarrow2^n=2^4\Leftrightarrow n=4\)
\(3^n=243\Rightarrow3^n=3^5\Leftrightarrow n=5\)
\(b.\) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
\(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
\(c.\) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
\(4^{n-1}=1024\Rightarrow4^{n-1}=4^5\Rightarrow n-1=5\Rightarrow n=6\)
2n+1:42=1024
2n+1:16=1024
2n+1 =1024:16
2n+1 =64
2n+1 =26
n+1 =6
n =6-1
n =5
TL:
a.\(2^6.2^n=2^{11}\)
\(2^{6+n}=2^{11}\)
\(\Rightarrow n=5\)
b. \(3^7:3^n=3^4\)
\(3^{7-n}=3^4\)
\(\Rightarrow n=3\)
c.\(2^n.32=2^{10}\)
\(2^{n+5}=2^{10}\)
\(\Rightarrow n=5\)
64 . 4x = 168
<=> 43. 4x = 416
=> 3 + x = 16
<=> x = 13
Vậy x = 13
2x.162 = 1024
<=> 2x. 28 = 210
=> x + 8 = 10
<=> x = 2
Vậy x = 2
b: Ta có: \(2^x\cdot16^2=1024\)
\(\Leftrightarrow2^x\cdot2^8=2^{10}\)
\(\Leftrightarrow x+8=10\)
hay x=2
a) 5x+x+1=\(\dfrac{125}{25}\)
\(\leftrightarrow\) 52x+1 =51
\(\leftrightarrow\) 2x+1=1
\(\leftrightarrow\)2x=0
\(\leftrightarrow\) x=0
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
\(32^{-n}\cdot16^n=1024\)
=>\(2^{-5n}\cdot2^{4n}=1024\)
=>\(2^{-n}=2^{10}\)
=>-n=10
=>n=-10(loại)
Vậy: \(n\in\varnothing\)