Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là tổng 1 cấp số cộng có d=2. áp dụng công thức tính tổng cấp số cộng để tìm ra số các số hạng n
1+2+3+...+n=1275
Tổng của dãy là:(n+1).n :2=1275
=>(n+1).n=1275x2=2550
=>n.(n+1)=2550=50.51
=>n=51
Đặt \(A=1+3+...+2n-1\)
Tổng A có số số hạng là:
\(\frac{\left[\left(2n-1\right)-1\right]}{2}+1=\frac{2n-1-1}{2}+\frac{2}{2}=\frac{2n-2+2}{2}=\frac{2n}{n}=n\)(số)
Tổng A theo n là:
\(\frac{\left(2n+1+1\right)\cdot n}{2}=\frac{\left(2n+2\right)\cdot n}{2}=\frac{2n\left(n+1\right)}{2}=n\left(n+1\right)\)
Thay A vào ta có:
\(n\left(n+1\right)=1225\)
.... ?Đề sai?.....
Có số số hạng là :
( 2n -1 - 1): 2 + 1 = ( 2n- n ) : 2 + 1 = 2.( n-1 ) :2 + 1 = n-1+1= n ( số hạng )
Tổng trên là :
( 2n -1 + 1 ) .n : 2 = ( 2n . n ) : 2 = n2
\(\Rightarrow\) n2 = 1225
n2 = 352
\(\Rightarrow\) n = 35
Tổng bên vế trái là tổng dãy số cách đều 2 đơn vị.
Đặt S = 1 + 3 + ... + (2n-1), ta viết lại S theo thứ tự ngược lại ta có:
S = (2n -1) + (2n-3) + ...+ 2 + 1
Cộng các vế với nhau ta có:
2S = [1 + (2n-1)] + [2 + (2n-2)] + ... + [(2n-1) + 1]
= 2n + 2n + ,,, (có [(2n-1) - 1]:2 + 1 = n số hạng)
= 2n, n
=> S = n2
Vậy n2 = 1225
=> n = 35
1+3+5+7+..........+n= 1225
=> \(\frac{\text{(x+1)x}}{2}=1225\)
\(\Rightarrow\left(x+1\right)x=2450\)
\(\Rightarrow49.50=2450\)
=> x=49