K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`7 + 6n vdots 2n -1`

`6n -3 + 10 vdots 2n-1`

`10 vdots 2n-1`

`2n-1 in Ư(10)`.

Đến đây bạn tự giải nhé

20 tháng 3 2021

n có giá trị nhỏ nhất khi và chỉ khi 3n+2 có giá trj lớn nhất cứ theo thé mà làm bài

20 tháng 3 2021

Ta có: \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)

Để \(A_{min}\)\(\Rightarrow\)\(2+\frac{5}{3n+2}min\)mà \(\hept{\begin{cases}2>0\\5>0\\n\inℤ\end{cases}}\)

\(\Rightarrow\)\(3n+2\)lớn nhất nhưng nguyên âm

\(\Rightarrow\)\(3n+2=-1\)\(\Leftrightarrow\)\(n=-1\)\(\left(TM\right)\)

Vậy để \(A_{min}\)\(\Leftrightarrow\)\(n=-1\)

24 tháng 3 2018

a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)

13 tháng 1 2019

\(\Rightarrow6n-17 ⋮ 2n-9\)

\(\Rightarrow3\left(2n-9\right)+10⋮2n-9\)

\(\Rightarrow2n-9\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5\right\}\)

\(\Rightarrow2n\in\left\{4;7;8;10;11;14\right\}\)

\(\Rightarrow n\in\left\{2;4;5;7\right\}\)

9 tháng 7 2019

\(A=\frac{6-3n}{n}=\frac{6}{n}-3\)

\(\Rightarrow A\in Z\Leftrightarrow\frac{6}{n}\in Z\Rightarrow n\inƯ_6\)

\(\Rightarrow...\)

\(B=\frac{7+14n}{2n}=\frac{7}{2n}+7\)

\(B\in Z\Leftrightarrow\frac{7}{2n}\in Z\Rightarrow2n\inƯ_7\)

\(\Rightarrow...\)

\(c,\frac{3-21n}{3n}=\frac{3}{3n}-7=\frac{1}{n}-7\)

\(C\in Z\Leftrightarrow\frac{1}{n}\in Z\Leftrightarrow n\in\left\{\pm1\right\}\)

5 tháng 11 2020

Ta có\(15-2n⋮n+1\)

\(\Rightarrow17-2\left(n+1\right)⋮n+1\)

\(\Rightarrow17⋮n+1\)

\(\Rightarrow n+1\inƯ\left(17\right)=\left\{1;17\right\}\)

\(\Rightarrow n=\left\{0;16\right\}\)

5 tháng 11 2020

Ta có \(6n+9⋮4n-1\)

\(\Rightarrow4\left(6n+9\right)⋮4n-1\)

\(\Rightarrow24n+36⋮4n-1\)

\(\Rightarrow6\left(4n-1\right)+42⋮4n-1\)

\(\Rightarrow42⋮4n-1\)

\(\Rightarrow4n-1\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

\(n\in N\Rightarrow n=\left\{1;2\right\}\)

24 tháng 10 2017

a, n+5=(n+1)+4 chia hết cho n + 1

n+1 chia hết cho n+1 nên 4 chia hết n+1

=> n+1 laf uowsc cuar 4 = ( +-1 +-2 +-4 )

19 tháng 5 2019

Gọi \(ƯCLN\)\((2n+1,6n+7)=d\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6(2n+1)⋮d\\2(6n+7)⋮d\end{cases}}\)

Làm nốt nhé :v

19 tháng 5 2019

Gọi ( 2n+1 , 6n+7 )=d

=>\(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

===>\(\hept{\begin{cases}6\cdot\left(2n+1\right)⋮d\\2\cdot\left(6n+7\right)⋮d\end{cases}}\)

=>\(\hept{\begin{cases}12n+6⋮d\\12n+14⋮d\end{cases}}\)

<=>(12n+14 - 12n+6) \(⋮\)d

<=>8 \(⋮\)d

=> d  thuộc ước của 8.

Bạn tự cm d=1 nhé!

~ Chúc bạn hok tốt ~

29 tháng 4 2020

ko bt nha ko tên

29 tháng 4 2020

@phan thi ly na bạn ko biết comment làm j dị