Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vào câu hỏi tương tự là có đó
bây giờ mk sắp phải đi học rùi
nên ko có thời gian đê tra lời câu hỏi của bn
nhae chúc bn hoc thật tốt!
1.2+2.2+3.2+...+2n=756
2.(1+2+3+...+n)=756
1+2+3+...+n=378
n(n+1):2=378
m.(n+1)=
a) ( 2n + 2 ) . n : 2 = 210
2 ( n + 1 ) . n : 2 = 210
n( n + 1 ) = 210
n ( n + 1 ) = 14 . 15
Vậy n = 14
b) ( 2n - 1 + 1 ) . n : 2 = 225
2n . n : 2 = 225
n2 = 225 = 152
Vậy n = 15.
Tìm n ∈N* biết ;
a) 2 + 4 + 6 + .. + 2n = 210
=2( 1+2+3+...+n) =2.(1+n)n:2=(1+n)n
lại có:210=14.15
=> n=14
b) 1 + 3 + 5 + .. + ( 2n - 1 ) = 225
ta có: 1+3+5+...+(2n-1) và đây là tổng của n số lẻ đầu tiên
lại có:1+3+5+..+(2n-1)=2n-1+1).n:2=n2
=>n2=225=152=>n=15
a/ A luôn là hợp số vì A luôn chia hết cho 3
b/ <=> 144 = \(\frac{\left(2n+1+1\right).}{2}\) x( \(\frac{\left(2n+1-1\right)}{2}\) +1)
<=> n = 11
a) 1+2+3+......+n=1275
Xét tổng trên có
(n-1):1+1=n số hạng
\(\Rightarrow\)1+2+3+.......+n=1275
\(\Rightarrow\)(n+1).n:2=1275
\(\Rightarrow\left(n+1\right)n=1275.2\)
\(\Rightarrow\left(n+1\right)n=2550\)
\(\Rightarrow\left(n+1\right)n=50.51\)
\(\Rightarrow n=50\)
Vậy n=50
a) 2+ 4 + 6 +...+ 2x = 210
<=> 2*(1 + 2 + 3 +...+ x) = 210
<=> 2*[x*(x+1)/2] = 210
<=> x*(x+1) = 210
<=> x=14
b)bài này có công thức tổng của các số lẻ bắt đầu từ 1 thì tổng sẽ bằng số các số hang mũ 2.Vậy trong bài này ta có
225=15^2 suy ra tổng này có 15 số hạng.vậy số do là;(14.2)+1=29 mà 29=(15.2-1) suy ra n=15
a) 2+4+6+8+...+2n = 210
2.(1+2+3+4+...+n) = 210
1+2+3+4+...+n = 210:2
1+2+3+4+...+n = 105
=> n.(n+1):2 = 105
n.(n+1) = 105.2
n.(n+1) = 210
Vì 14.15 = 210 => n = 14
b) 1.1+3+5+...+(2n-1)=225
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225
<=> (2n.2n):4 = 225
<=> n2=225
=> n = 15 và n = -15
Vì n thuộc N* nên n = 15 thỏa mãn
a) => n-1+3 chia hết n-1
Mà n-1 chia hết n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ước của 3
........
b)=> 2(n+1) +5 chia hết n+1
mà 2(n+1) chia hết n+1
=> 5 chia hết cho n+1
=> n+1 thuộc ước của 5
.......
a,Ta có :\(n+2⋮n-1\)
\(=>n-1+3⋮n-1\)
Do \(n-1⋮n-1\)
\(=>3⋮n-1\)
\(=>n-1\inƯ\left(3\right)\)
\(=>n-1\in\left\{-3;-1;1;3\right\}\)
\(=>n\in\left\{-2;0;2;4\right\}\)
b,\(2n+7⋮n+1\)
\(=>2.\left(n+1\right)+5⋮n+1\)
Do \(2.\left(n+1\right)⋮n+1\)
\(=>5⋮n+1\)
\(=>n+1\inƯ\left(5\right)\)
\(=>n+1\in\left\{-5;-1;1;5\right\}\)
\(=>n\in\left\{-6;-2;0;4\right\}\)
1 ) 10 \(⋮\) n
=> n \(\in\) Ư ( 10 )
Ư ( 10 ) = { 1 , 2 , 5 , 10 }
Vậy n \(\in\) { 1 ; 2 ; 5 ; 10 }
2 ) 12 : \(⋮\) ( n - 1 )
=> n - 1 \(\in\) Ư ( 12 )
=> Ư ( 12 ) = { 1 ; 12 ; 2 ; 6 ; 3 ; 4 }
n - 1 | 1 | 12 | 2 | 6 | 3 | 4 |
n | 2 | 13 | 3 | 7 | 4 | 5 |
Vậy n \(\in\) { 2 , 13 , 3 , 7 , 4 , 5 }
3 ) 20 \(⋮\) ( 2n + 1 )
=> 2n + 1 \(\in\) Ư ( 20 )
=> Ư ( 20 ) = { 1 ; 20 ; 2 ; 10 ; 4 ; 5 }
2n+1 | 1 | 20 | 2 | 10 | 4 | 5 |
n | 0 | 19/2 ( loại ) | 1/2 ( loại ) | 9/2 ( loại ) | 3/2 ( loại ) | 2 |
Các trường hợp loại , vì n \(\in\) N
Vậy n thuộc { 0 , 2 }