Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S hình thoi là:
(19 x 12) : 2 = 114(cm2)
b) S hình thoi là;
(30 x 7) : 2 = 105(cm2)
\(2^n.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)(n\(\in\)N)
\(2^n.2^n.\left(\frac{2}{3}\right)^n.\left(3^2\right)^n=82944\)
\(\left(2.2.\frac{2}{3}.9\right)^n=82944\)
\(24^n=82944\)
Tớ làm đến đây thôi khó lắm bạn xem lại đề đi
\(2^2\cdot3^{2n}\cdot\left(\frac{2}{3}\right)^n\cdot2^n=82944\)
\(2^2\cdot\left(3^2\right)^n\cdot\left(\frac{2^n}{3^n}\right)\cdot2^n=82944\)
\(2^2\cdot9^n\cdot\frac{2^n}{3^n}\cdot2^n=82944\)
\(2^2\cdot\frac{9^n\cdot2^n}{3^n}\cdot2^n=82944\)
\(2^2\cdot\frac{18^n}{3^n}\cdot2^n=82944\)
\(4\cdot6^n\cdot2^n=82944\)
\(6^n\cdot2^n=82944:4\)
\(12^n=20736\)
\(12^n=12^4\)
Vậy n=4
Số tự nhiên n thỏa mãn:22.32n.\(\left(\frac{2}{3}\right)^n\).2n=82944 là..............(kết quả thôi)
Ta có :
\(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{\left(n-1\right)n-1}{n!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4}!+\frac{1}{3!}-\frac{1}{5!}+\frac{1}{4!}-...+\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)
\(=2-\frac{1}{n!}< 2\)
Vậy ...
\(2^2.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)
\(2^2.9^n.\left(\frac{2}{3}\right)^n.2^n=2^{10}.3^4\)
\(2^2.2^n.\left(\frac{2}{3}.9\right)^n=2^{10}.3^4\)
\(2^{n+2}.6^n=2^{10}.3^4\)
\(2^{n+2}.2^n.3^n=2^{10}.3^4\)
\(2^{2n+2}.3^n=2^{10}.3^4\)
Vậy n = 4