Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét n =0
=> 3n+6 = 30+6 = 1+6 = 7 ( là số nguyên tố )
Xét n \(\ne\)0
=> 3n+ 6 = 3.(3n-1+2) chia hết cho 3 ( là hợp số )
Vay n=0
b)
n2+12n = n(n+12)
Xét n =0 => n(n+12) = 0 (vô lý )
Xét n = 1 => n(n+12) = 1.13 =13 ( là số nguyên tố )
Xét n >1
=> n(n+12) chia hết cho n ; (n+12 ) (la hop so )
Vậy n =1
a)Ta có: n2+18n=n.(n+18)
Ư(n2+18n)={1,n,n+18,n.(n+18)}
Để n2+18n là số nguyên tố
=>Ư(n2+18n)={1,n.(n+18)}
=>n=1 hoặc n+18=1
Vì n+18>n
=>n=1
Vậy n=1
2) vì abc + def chia hết cho 37 nên : 1000 abc + 1000 def cũng chia hết cho 37 => 1000 abc + def + 999 def cũng chia hết cho 37
mà ta thấy 999def chia hết cho 37 nên (1000 abc + def ) cũng chia hết cho 37 hay abcdef chia hết cho 37
vậy abcdef là hợp số => ( đpcm )
Đặt \(ƯC\left(3n^2+3n+4;n^2+n+1\right)=d\)
\(\Rightarrow3n^2+3n+4⋮d,n^2+n+1⋮d\)
\(\Rightarrow3n^2+3n+4-3\left(n^2+n+1\right)⋮d\)
\(\Rightarrow3n^2+3n+4-3n^2-3n-3⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy với \(n\inℕ\) thì \(3n^2+3n+4\) và \(n^2+n+1\) nguyên tố cùng nhau.
a) n2+12n = n(n+12) là số nguyên tố
Mà nếu n là hợp số thì n(n+12) là hợp số
Mà nếu n là số nguyên tố thì n(n+12) là hợp số (chia hết cho n)
=> n không phải là hợp số và số nguyên tố
=> n = 0 hoặc n = 1
Mà nếu n = 0 thì n2+12n = 0 => loại
n = 1 => n2+12n = 13 =>chọn
Vậy n = 1
ai tick cho mình đi