\(\in\) N để

a) n2 + 12n là số nguyên tố

b) 3n + 6 là số ngu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

a) n2+12n = n(n+12) là số nguyên tố

Mà nếu n là hợp số thì n(n+12) là hợp số

Mà nếu n là số nguyên tố thì n(n+12) là hợp số (chia hết cho n)

=> n không phải là hợp số và số nguyên tố

=> n = 0 hoặc n = 1

Mà nếu n = 0 thì n2+12n = 0 => loại

n = 1 => n2+12n = 13 =>chọn

Vậy n = 1

8 tháng 11 2015

ai tick cho mình đi

1 tháng 11 2015

a) 

Xét n =0 

=> 3n+6 = 30​+6 = 1+6 = 7 ( là số nguyên tố ) 

Xét n \(\ne\)0

=> 3n+ 6 = 3.(3n-1+2) chia hết cho 3 ( là hợp số ) 

Vay n=0 

b) 

n2+12n = n(n+12) 

Xét n =0 => n(n+12) = 0 (vô lý ) 

Xét n = 1 => n(n+12) = 1.13 =13 ( là số nguyên tố ) 

Xét n >1 

=> n(n+12) chia hết cho n ; (n+12 )  (la hop so )

Vậy n =1 

11 tháng 11 2015

a, n=1

b, không có n

c, chưa ra

11 tháng 11 2015

a)Ta có: n2+18n=n.(n+18)

Ư(n2+18n)={1,n,n+18,n.(n+18)}

Để n2+18n là số nguyên tố

=>Ư(n2+18n)={1,n.(n+18)}

=>n=1 hoặc n+18=1

Vì n+18>n

=>n=1

Vậy n=1

23 tháng 11 2014

2) vì abc + def chia hết cho 37 nên : 1000 abc + 1000 def cũng chia hết cho 37 => 1000 abc + def + 999 def cũng chia hết cho 37

mà ta thấy 999def chia hết cho 37 nên (1000 abc + def ) cũng chia hết cho 37 hay abcdef  chia hết cho 37

vậy abcdef là hợp số => ( đpcm ) 

3 tháng 12 2018

Đặt \(ƯC\left(3n^2+3n+4;n^2+n+1\right)=d\)

\(\Rightarrow3n^2+3n+4⋮d,n^2+n+1⋮d\)

\(\Rightarrow3n^2+3n+4-3\left(n^2+n+1\right)⋮d\)

\(\Rightarrow3n^2+3n+4-3n^2-3n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy với \(n\inℕ\) thì \(3n^2+3n+4\) và \(n^2+n+1\) nguyên tố cùng nhau.

23 tháng 10 2015

a) n=1

b)n=0

tick cho mình nha

23 tháng 10 2015

a) n = 1

b) n = 0