Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
1)
Ta có:
x + 10 chia hết cho 5
10 chia hết cho 5
\(\Rightarrow\)x chia hết cho 5
x - 18 chia hết cho 6
18 chia hết cho 6
\(\Rightarrow\)x chia hết cho 6
x + 21 chia hết cho 7
21 chia hết cho 7
\(\Rightarrow\)x chia hết cho 7
\(\Rightarrow\)x \(\in\)BC ( 5;6;7 )
BC ( 5;6;7 ) = {0 ; 210 ; 420 ; 630 ; 840 ; ... }
Vì x \(\in\)BC( 5;6;7 ) và 500 < x < 700\(\Rightarrow\)x = 630
e) n2 + 2n + 6 chia hết cho n + 4
n2 + 4n - 2n + 6 chia hết cho n + 4
n.(n + 4) - 2n + 6 chia hết cho n + 4
2n + 6 chia hết cho n + 4
2n + 8 - 2 chia hết cho n + 4
2.(n + 4) - 2 chia hết cho n + 4
=> - 2 chia hết cho n + 4
=> n + 4 thuộc Ư(-2) = {1 ; -1 ; 2 ; -2}
Xét 4 trường hợp ,ta có :
n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 2 => n = -2
n + 4 = -2 => n = -6
2n + 3 chia hết cho n - 6
=> 2n - 12 + 15 chia hết cho n - 6
=> 2.(n - 6) + 15 chia hết cho n - 6
Do 2.(n - 6) chia hết cho n - 6 => 15 chia hết cho n - 6
Mà \(n\in N\)=> \(x-6\ge-6\)
=> \(n-6\in\left\{1;-1;3;-3;5;-5;15\right\}\)
=> \(n\in\left\{7;5;9;3;11;1;21\right\}\)
a, \(n+3⋮n-1\)
\(n-1+4⋮n-1\)
\(4⋮n-1\)hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
\(4n+3⋮2n+1\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\Leftrightarrow1⋮2n+1\)
Lập bảng tương tự
a) Theo bài ra ta có : 4n + 8 chia hết cho (2n -1) => 4n +8 chia hết cho 2(2n -1)
=>(4n + 8) -2(2n -1) chia hết cho 2n -1
=>4n + 8 - 4n + 2 chia hết cho 2n -1
=> 10 chia hết cho 2n -1
=> 2n -1 thuộc Ư(10)={1;2;5;10}
Ta có : 2n -1 = 1 => 1
2n - 1 =2 => n ko thuộc N
2n - 1= 5 => n = 3
2n - 1 = 10 => n ko thuộc N
Vậy n = 1 hoặc n = 3
b) Vì n2 +6 là bội của n +1 => n2 + 6 chia hết cho n +1
=> n2 + 6 = n . n +6 =2n +6 chia hết cho 2(n + 1)
=> (2n +6) -2(n+1) chia hết cho n+ 1
=> 2n +6 -2n - 2 chia hết cho n +1
=> 4 chia hết cho n + 1
=> n +1 thuộc Ư(4)={1;2;4}
Ta có : n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
n + 1 = 4 => n = 3
Vậy n thuộc {0;1;3}
2n \(⋮\)n-1
Vì n-1\(⋮\)n-1
=> 2(n-1)\(⋮\)n-1 (1)
=> 2n - 2 \(⋮\) n-1 (2)
Từ (1) và (2) => 2n - (2n - 2 ) \(⋮\)n-1
2n - 2n +2\(⋮\) n-1
2 \(⋮\)n-1
=> n-1\(\inƯ\left(2\right)=\) {-2;-1;1;2}
=> Ta cos bangr sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
VẬy n\(\in\){-1;0;2;3}
\(_{ }\)