Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\sqrt{100-\left(x+1\right)^2}+2=\sqrt{\left(10-x-1\right)\left(10+x+1\right)}+2=\sqrt{\left(99-x\right)\left(x+101\right)}+2\)
\(=\left(99-x\right)+\left(x+101\right)+\sqrt{\left(99-x\right)\left(x+101\right)}=\left(\sqrt{99-x}+\sqrt{x+101}\right)^2\)
A là số chính phương chẵn => 99-x ; x+101 là số chính phương ( 99-x ; x+101 luôn cùng chẵn cùng lẻ)(-101</ x</ 99)
......................................................????
Do số chính phương chẵn chỉ có thể là số 2 nên \(\sqrt{199-x^2-2x}\)+2 =2
<=> \(\sqrt{199-x^2-2x}\)=0
<=> 199 -\(x^2\)-2x=0
<=> x=\(-1-10\sqrt{2}\) hoặc x=\(-1+10\sqrt{2}\)
Chuẩn ròi nha.. tick cho mik nha bạn.
đặt \(x^2+x+23=k^2\left(k\in N\right)\Leftrightarrow4x^2+4x+92=4k^2\Leftrightarrow4k^2-\left(2x+1\right)^2=91\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=91\)
vì 2k+2x+1>2k-2x-1>0 nên xảy ra 2 trường hợp sau
th1 2k+2x+1=91 và 2k-2x-1=1 => x=22
th2 2k+2x+1=1 và 2k-2x-1=7 => x=1
vậy x=22; x=1 thì \(\sqrt{x^2+x+3}\)là số hữu tỉ