K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

a) \(\dfrac{1}{8}.16^n=2^n\)

=>\(\dfrac{2^{4n}}{2^3}=2^n\)

=>\(2^{4n-3}=2^n\)

=>4n-3=n

=>3n-3=0

=>n=1.

b) \(27< 3^n< 243\)

=>\(3^3< 3^n< 3^5\). Mà n là số tự nhiên.

- Vậy n=4

30 tháng 1 2022

a) \(\dfrac{1}{8}.16^n=2^n\)

\(\Rightarrow2^{4n}=2^3.2^n\)

\(\Rightarrow4n=3+n\)

\(\Rightarrow3n=3\)

\(\Rightarrow n=1\)

Vậy: \(n=1\)

b) \(27< 3^n< 243\)

\(\Rightarrow3^3< 3^n< 3^5\)

\(\Rightarrow3< n< 5\)

\(\Rightarrow n=4\)

Vậy: \(n=4\)

22 tháng 12 2019

mk chắc chắn 100% là n >1

22 tháng 12 2019

b)\(27< 3^n< 243\)

\(3^3< 3^n< 3^5\)

\(\Rightarrow3< n< 5\)

\(\Rightarrow n\in\left\{4\right\}\)

27 tháng 1 2016

ok con de

12 tháng 1 2017

\(\frac{2^{4n}}{2^3}=2^n\Leftrightarrow2^{4n-3}=2^n\Rightarrow4n-3=n\Rightarrow n=1\)

\(3^3< 3^n< 3^5\Rightarrow n=4\)

2 tháng 2 2017

a/ \(\frac{1}{8}.16^n=2^n\)

=> \(\frac{1}{8}.2^{4n}=2^n\)

=> \(\frac{2^n}{2^{4n}}=\frac{1}{8}\)

=> \(2^{n-4n}=2^{-3}\)

=> \(n-4n=-3\)

=> \(n=1\)

b/ 27 < 3n <243

hay 33 < 3n < 35

=> 3< n <5

=> n = 4

23 tháng 7 2017

27 < 3n < 243

=> 33 < 3n < 5

=> 3 < n < 5 

=> n = 4

23 tháng 7 2017

\(3^3< 3^n< 3^5\)
\(3< n< 5\)
Vậy n= 4

15 tháng 11 2018

a) \(\dfrac{1}{8}.16^n=2^n\)

=> \(2^{4.n-3}\)=\(2^n\)

=> \(4.n-3=n\)

=> \(n=1\)

b) \(27< 3^n< 243\)

=> \(3^3< 3^n< 3^5\)

=> \(n=4\)

25 tháng 5 2016

a) 32 < 2^n < 128

hay 2^5 < 2^n < 2^7

=>  5 < n < 7

=>  n = 6

b) 2.16 \(\ge\)2^n > 4

hay 2^5 \(\ge\)2^n > 2^2

=>  5 \(\ge\)n > 2

=>  n \(\in\left\{5;4;3\right\}\) 

c) 9.27 \(\le\)3^n \(\le\) 243

hay 3^5 \(\le\)3^n \(\le\) 3^5

=>   5 \(\le\) n \(\le\) 5

=>   n = 5

25 tháng 5 2016

a,32<2^n<128

n sẽ bằng 6 vì khi 2^6=64>32 và 2^6=64 <128 (thỏa mãn điều kiện)

Vậy :n=6

lm tương tự

30 tháng 6 2015

1, 32 < 2^n < 128

    2^5 < 2^n < 2^7

=> 5 < n < 7 

Vì n là nguyên dương => n = 6 

2,  2.16 > (=) 2^n > 4 

    2.2^4 > (=) 2^n > 2^2 

  2^5 > (=) 2^n  > 2^2

 5 >(=) n > 2 => n = 5 ; 4 ; 3 

3, 9.27 < 3^n <= 243

  3^2 . 3^3 < 3^n <= 3^5

     3^5       < 3^n  <=5

   5 < n <= 5 ( không có n)