Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=n^2+n^2+2n+1+n^2+4n+4+n^2+6n+9\)
\(=4n^2+12n+14=\left(2n\right)^2+2\cdot2n\cdot3+3^2+5=\left(2n+3\right)^2+5\)
vì \(5⋮5\)để \(A⋮5\Rightarrow\left(2n+3\right)^2⋮5\Rightarrow2n+3⋮5\Rightarrow2n-2+5⋮5\Rightarrow2n-2⋮5\Rightarrow2\left(n-1\right)⋮5\Rightarrow n-1⋮5\)
vì 1 chia 5 dư 1 để n-1 chia hết cho 1 suy ra n chia cho 5 phải dư 1
\(\Rightarrow n=\left(6;11;16;...;5n+1\right)\)
vậy \(n=\left(6;11;16;...;5n+1\right)\)thì \(A⋮5\)
a/ \(n=2m+1\)
\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)
b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)
Để nó chia hết thi n + 1 là ước nguyên của 2
\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)
\(\Rightarrow n=\left(-3,-2,0,1\right)\)
Để 2^n chia hết cho 3
suy ra 2^n thuộc BC<3>
Ta có 3=3
suy ra:BCNN<3>=3
suy ra:BC<3>=B<3>={0;3;6;9;12;15;18;21;...}
Mà 2^n thuộc BC<3>
suy ra:n thuộc tập hợp:rỗng
Vậy không có số tự nhiên n nào thỏa mãn yêu cầu đề bài