Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để n+4 chia hết cho n+1
=>n+1/n+1+3/n+1
=>n+1 thuộc ước của 3
=> - n+1= 1 =>n=0
- n+1=-1 n=-2(loại)
- n+1=3 n=2
- n+1=-3 n=-4(loại)
Vậy n=0 và n=2
\(n+4⋮n+1\)
\(n+4=n+1+3⋮n +1\)
mà \(n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
n+1 | 1 | 2 | 3 |
n | 0 | 1 | 2 |
Vậy \(n\in\left\{0;1;2\right\}\)
nếu sai thì cho mk xin lỗi
a) n+4 chia hết cho n+1
n+4=n+1+3
Vì n+1 chia hết cho n+1 nên 3 phải chia hết cho n+1=>n+ là ước của 3
Ư(3)={1;3}
Nếu n+1=1=>n=0
Nếu n+1=3=>n=2
a) n+4 chia hết cho n+1
Ta có: n+4 chia hết cho n+1
=> (n+1)+3 chia hết cho n+1
=> 3 chia cho n+1 hay n+1 thuộc ước của 3
Mà Ư(3)={1;3}
+) Nếu n+1=1 => n=0 (t/m)
+) Nếu n+1=3 => n=2 (t/m)
Vậy n thuộc{0;2}
b);c) làm tương tự nha bn
a)n+4 chia hết cho n+1
n+4=n+1+3
=>n+1+3 chia hết cho n+1
=>n+1 chia het cho n+1
=>3 chia hết cho n+1
mà 3 chia hết cho 1;3
n+1 n 1 0 3 2
vay n=0;2
Sai thì sửa,chửa thì đẻ
a)
n+4 chia hết cho n+1
n+1+3 chia hết cho n+1
ta có:
n+1 chia hết cho n+1
để n+1+3 chia hết cho n+1 thì 3 pahỉ chia hết cho n+1 hay n+1 thuộc Ư(3)={1;3}
=>n thuộc {0,2}
b)
Ta có: n2+4⋮n+2n2+4⋮n+2 (I)
Mà n+2⋮n+2n+2⋮n+2
⇒n(n+2)⋮n+2⇒n(n+2)⋮n+2
⇒n2+2n⋮n+2⇒n2+2n⋮n+2 (II)
Từ (I) và (II) ⇒(n2+2n)−(n2+4)⋮n+2⇒(n2+2n)−(n2+4)⋮n+2
⇒2n−4⋮n+2⇒2n−4⋮n+2
⇒(2n+4)−8⋮n+2⇒(2n+4)−8⋮n+2
⇒2(n+2)−8⋮n+2⇒2(n+2)−8⋮n+2
⇒−8⋮n+2⇒−8⋮n+2
⇒n+2∈{1;2;4;8}⇒n+2∈{1;2;4;8} ( vì n∈Nn∈N )
⇒⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩n+2=1⇒n=−1(loai)n+2=2⇒n=0n+2=4⇒n=2n+2=8⇒n=6⇒{n+2=1⇒n=−1(loai)n+2=2⇒n=0n+2=4⇒n=2n+2=8⇒n=6
Vậy n=0 hoặc n=2 hoặc n=6
a) n + 4 chia hết cho n + 2
=> n+2 +2 chia hết cho n + 2
=> 2 chia hết cho n + 2 =>n+ 2 E Ư(2){1;2}
+ Xét trường hợp nếu n + 2 = 1 (loại)
+_________________n + 2 = 2 => n = 0 (thỏa mãn)