Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
1. Giả sử \(a-3⋮a^2+2\Rightarrow\dfrac{a-3}{a^2+2}=A\) \(\left(A\in Z;A\ne0\right)\)
\(\Rightarrow a-3=A.a^2+2A\Rightarrow A.a^2-a+2A+3=0\)
\(\Delta=1-4A\left(2A+3\right)\ge0\Rightarrow-8A^2-12A+1\ge0\)
\(\Rightarrow\dfrac{-3-\sqrt{11}}{4}\le A\le\dfrac{-3+\sqrt{11}}{4}\)
Mà A nguyên \(\Rightarrow A=0\) hoặc \(A=-1\)
\(A=0\Rightarrow a-3=0\Rightarrow a=3\)
\(A=-1\Rightarrow-a^2-a+1=0\) \(\Rightarrow\) pt ko có nghiệm nguyên
Vậy a=0 thì a-3 chia hết \(a^2+2\)
2. \(x^2-2y=1\Rightarrow2y=x^2-1=\left(x-1\right)\left(x+1\right)\)
Nếu x chẵn \(\Rightarrow x=2\Rightarrow\) y không phải số tự nhiên (loại)
Nếu x lẻ \(\Rightarrow x-1\) và \(x+1\) đều là số chẵn \(\Rightarrow\left(x-1\right)\left(x+1\right)⋮4\)
Đặt \(\left(x-1\right)\left(x+1\right)=4k\) với \(k\in N;k\ge1\)
\(\Rightarrow2y=4k\Rightarrow y=2k\)
Nếu \(k=1\Rightarrow y=2\Rightarrow x^2=2y+1=5\) \(\Rightarrow\) x không phải số tự nhiên (loại)
Nếu \(k>1\) \(\Rightarrow\) y là số chẵn lớn hơn 2 \(\Rightarrow\) y không phải là số nguyên tố
\(\Rightarrow\)Không tồn tại cặp số nguyên tố (x;y) nào để \(x^2-2y=1\)
3. Nếu d=0 =>d chia hết cho 6. Xét d>0, d là STN
Ta luôn có \(p>2\) do nếu \(p=2\Rightarrow p+2d=2\left(d+1\right)\) là hợp số, vô lý
\(\Rightarrow\) p là số lẻ \(\Rightarrow d\) là số chẵn (vì nếu d lẻ thì p+d chẵn là hợp số) \(\Rightarrow d⋮2\)
TH1: \(p=3a+1\)
Nếu \(d=3b+1\Rightarrow p+2d=3a+1+6b+2=3\left(a+2b+1\right)⋮3\)
\(\Rightarrow\) vô lý (do giả thiết p+2d là số nguyên tố)
Nếu \(d=3b+2\Rightarrow p+d=3a+1+3b+2=3\left(a+b+1\right)⋮3\) vô lý
Vậy \(d=3b\Rightarrow d⋮3\Rightarrow d⋮6\)
TH2: \(p=3a+2\)
Nếu \(d=3b+1\Rightarrow p+d=3a+2+3b+1=3\left(a+b+1\right)⋮3\) (loại)
Nếu \(d=3b+2\Rightarrow p+2d=3a+2+6b+4=3\left(a+2b+2\right)⋮3\) (loại)
Vậy \(d=3b⋮3\Rightarrow d⋮6\)
Kết luận: nếu p, p+d, p+2d là số nguyên tố thì d chia hết cho 6
4. Đề sai. Ta lấy ví dụ n=3 \(\Rightarrow2^3+1=9\) là hợp số, nhưng \(2^3-1=7\) là số nguyên tố
Hoặc \(n=5...\)
\(2n+1⋮n-3\)
\(\Leftrightarrow2\left(n-3\right)+7⋮n-3\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(7\right)\in\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow n\in\left\{-4;2;4;10\right\}\)
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
a) Để A là số hữu tỉ thì n - 3 >< 0 => n >< 3
b) Để A là số hữu tỉ dương thì n - 3 > 0 => n > 3
c) Để A là số hữu tỉ âm thì n - 3 < 0 => n < 3
â/ \(-55⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-55\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=55\\x-2=-1\\x-2=-55\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=57\\x=1\\x=-53\end{matrix}\right.\)
Vậy ...........
b/ \(x^2+2x-7⋮x+2\)
Mà \(x+2⋮x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-7⋮x+2\\x^2+2x⋮x+2\end{matrix}\right.\)
\(\Leftrightarrow-7⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=1\\x+2=-7\\x+2=-1\\x+2=7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\\x=-3\\x=5\end{matrix}\right.\)
Vậy .........
c/ \(\left(x-15\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-15=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-4\end{matrix}\right.\)
Vậy .........
d/ \(\left|3x-4\right|-12=13\)
\(\Leftrightarrow\left|3x-4\right|=25\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4=25\\3x-4=-25\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{3}\\x=-7\end{matrix}\right.\)
Vậy ..
em nghĩ bài này lớp 7 hay 8 gì đó chứ nhỉ,nhưng em ko chắc đâu:v Bài 2a thì em chịu
1/ Ta có: \(\frac{n^2+2n+11}{n+1}=\frac{\left(n+1\right)^2+10}{n+1}=n+1+\frac{10}{n+1}\)
\(\Rightarrow n+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow n\in\left\{-11;-6;-3;-2;0;1;4;9\right\}\)
2/ b) \(\left(x-y\right)\left(x+y\right)=2018=2.1009=1009.2=1.2018=2018.1\)
TH1: \(\left\{{}\begin{matrix}x-y=2\\x+y=1009\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\) (do x thuộc Z)
TH2: \(\left\{{}\begin{matrix}x-y=1009\\x+y=2\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\)
(do x thuộc Z)
TH3: \(\left\{{}\begin{matrix}x-y=1\\x+y=2018\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\) (L)
TH4: \(\left\{{}\begin{matrix}x-y=2018\\x+y=1\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\left(L\right)\)
Vậy không tồn tại các số x, y thuộc Z thỏa mãn phương trình
\(2,a;5^ynha\)
\(+,x=0\Rightarrow5^y=624+1=625=5^4\Rightarrow y=4\left(\text{thoa man}\right)\)
\(+,x\ne0\Rightarrow2^x+624\text{ chan mà:}5^y\text{ le}\Rightarrow\text{ loai}\)
\(x^2-y^2=2018\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\text{ là số chan mà:}x+y-\left(x-y\right)=2y\left(\text{ là số chan}\right)\Rightarrow\text{ x+y và: x-y cùng chan hoac cùng le mà:}\left(x+y\right)\left(x-y\right)=2018\Rightarrow\text{ x+y và: x-y cùng chan}\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\text{ mà:}2018\text{ không chia hết cho }4\text{ nên không tìm đ}ư\text{oc x,y thoa man đề bài}\)
Chứng minh: m và n không chia hết cho 3, khi đó:
m= 3a(+-)1, n=3b(+-)1 (a,b thuộc N) (hoặc cộng hoặc trừ)
=> m^2+n^2= 9.a^2(+-)6a+1+9.b^2(+-)6b+1= 3(3.a^2(+-)2a+3.b^2(+-)2b)+2
vì 3(3.a^2+2a+3.b^2+2b) chia hết cho 3 mà 2 không chia hết cho 3=> m^2+n^2 không chia hết cho 3 là trái giả thiết
vậy m^2+n^2 chia hết cho 3 thì m+n chia hết cho 3
vậy m^2+n^2 chia hết cho 3 thì m và n chia hết cho 3
\(n+3⋮n^2-7\)
\(\Leftrightarrow\left(n+3\right)\left(n-3\right)⋮n^2-7\)
\(\Leftrightarrow n^2-9⋮n^2-7\)
\(\Leftrightarrow n^2-7\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{3;-3\right\}\)