Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)
<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)
<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)
<=> 673n = 224.3(n+4)
<=> 673n = 224.3.n + 224.3.4
<=> 673n = 672n + 2688
<=> 673n - 672n = 2688
<=> n = 2688
Có: \(\dfrac{1}{21}+\dfrac{1}{77}+\dfrac{1}{165}+...+\dfrac{1}{n^2+4n}=\dfrac{56}{673}\)
\(\Leftrightarrow\dfrac{1}{3.7}+\dfrac{1}{7.11}+\dfrac{1}{11.15}+...+\dfrac{1}{n\left(n+4\right)}=\dfrac{56}{673}\)
\(\Leftrightarrow\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{n\left(n+4\right)}=\dfrac{4.56}{673}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{n}-\dfrac{1}{n+4}=\dfrac{224}{673}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{n+4}=\dfrac{224}{673}\)
\(\Leftrightarrow\dfrac{1}{n+4}=\dfrac{1}{2019}\)
\(\Leftrightarrow n=2015\)
A = \(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+\frac{1}{285}+\frac{1}{437}\)
A = \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}\)
A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)+\frac{1}{4}.\left(\frac{1}{7}-\frac{1}{11}\right)+\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{15}\right)+\frac{1}{4}.\left(\frac{1}{15}-\frac{1}{19}\right)+\frac{1}{4}.\left(\frac{1}{19}-\frac{1}{23}\right)\)
A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}\right)\)
A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{23}\right)\)
A = \(\frac{1}{4}.\frac{20}{69}\)
A = \(\frac{5}{69}\)
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)
=> \(A=\frac{9}{10}\)
b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)
=> \(A=1+\frac{7}{n-5}\)
Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)
=> n=(-2; 4, 6, 8)
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}\Rightarrow y=2\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}=\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\)
\(\Rightarrow2x=28\Rightarrow x=14\)
vậy x = 14
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{9.2}\)
\(\Rightarrow9y=9.2\Rightarrow y=2\)
thay y = 2 vào ta có :
\(\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\Rightarrow2x=28\Rightarrow x=14\)
b, \(\frac{1}{x}=\frac{y}{2}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{3y}{6}-\frac{2}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{3y-2}{6}\)
\(\Rightarrow x=6\)
2. \(B=\frac{10n-3}{4n-10}=\frac{\frac{5}{2}.\left(4n-10\right)+22}{4n-10}=\frac{5}{2}+\frac{22}{4n-10}\)
để \(B\) có giá trị lớn nhất thì \(\frac{22}{4n-10}\) là số dương lớn nhất
=> 4n - 10 là số dương nhỏ nhất ( n thuộc N )
\(\Rightarrow4n-10=2\Rightarrow4n=12\Rightarrow n=3\)
ta có :
\(B=\frac{10n-3}{4n-10}=\frac{30-3}{12-10}=\frac{27}{2}\)
Vậy để \(B\) có giá trị lớn nhất thì \(n=3\)
giá trị lớn nhất của \(B=\frac{27}{2}\)
a, \(\frac{-5}{21}+\frac{2}{9}=\frac{-15}{63}+\frac{14}{63}=\frac{-1}{63}\)
b, \(\frac{-4}{21}-\frac{5}{12}=\frac{-16}{84}-\frac{35}{84}=\frac{-51}{84}=\frac{-17}{28}\)
c, \(\frac{6}{-4}+\frac{1}{8}=\frac{-3}{2}+\frac{1}{8}=\frac{-12}{8}+\frac{1}{8}=\frac{-11}{8}\)
d, \(\frac{-56}{77}-\frac{30}{66}=\frac{-8}{11}-\frac{5}{11}=\frac{-13}{11}\)
e, \(\frac{-3}{9}+\frac{5}{-3}=\frac{-1}{3}+\frac{-5}{3}=\frac{-6}{3}=-2\)
\(A=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{15}+...+\frac{1}{n^2}-\frac{1}{4n}=\frac{56}{673}\)
\(\Rightarrow4A=\)
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
\(\Rightarrow\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n\left(n+4\right)}=\frac{56}{673}\)
\(\Rightarrow\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}\right)=\frac{56}{673}\)
\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{n}-\frac{1}{n+4}\right)=\frac{56}{673}\)
\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{n+4}\right)=\frac{56}{673}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{56}{673}:\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
\(\Rightarrow\frac{1}{n+4}=\frac{1}{3}-\frac{224}{673}\)
\(\Rightarrow\frac{1}{n+4}=\frac{1}{2019}\)
=> n + 4 = 2019
n = 2019 - 4
n = 2015