K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

xét A = n^3 + 2018n

A = n^3 + 2019n - n

A = n(n^2 - 1) + 2019n

A = n(n-1)(n+1)

có (n-1)n(n+1) chia hết cho 3 

  2019 chia hết cho 3 => 2019n chia hết cho 3

=> A chia hết cho 3                                                  (1)

xét B = 2020^2019 + 4

2020 chia 3 dư 1 => 2020^2019 chia 3 dư 1

4 chia 3 dư 1

=> B chia 3 dư 2               (2)

đển n^3 + 2018n = 2020^2019               + 4              (3)

(1)(2)(3) => n thuộc tập hợp rỗng

NV
4 tháng 5 2020

\(2x^4-x^3-2x^2-x+2=0\)

\(\Leftrightarrow2x^4-4x^3+2x^2+3x^3-6x^2+3x-4+2x^2-4x+2=0\)

\(\Leftrightarrow2x^2\left(x^2-2x+1\right)+3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+3x+2\right)\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x=2=0\left(vn\right)\\x^2-2x+1=0\Rightarrow x=1\end{matrix}\right.\)

Bạn tự thay \(x=1\) vào tính A

24 tháng 2 2020

Ta có : \(n^3+2018n=n\left(n^2-1+2019\right)=\left(n-1\right)n\left(n+1\right)+2019n⋮3\forall n\inℤ\) (*)

Lại có : \(2020\equiv1\left(mod3\right)\)

\(\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)

Và : \(4\equiv1\left(mod3\right)\)

Do đó : \(2020^{2019}+4\equiv2\left(mod3\right)\)

hay \(2020^{2019}+4⋮̸3\) . Điều này mâu thuẫn với (*)

Do đó, không tồn tại số nguyên n thỏa mãn đề.

6 tháng 12 2018

\(2x^2+y^2+z^2-2xy-2x+1=0\)

\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+z^2=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)

\(\Leftrightarrow x=y=1;=0\)

\(A=x^{2018}+y^{2019}+z^{2020}=1+1+0=2\)

2)

\(a+b+c=6\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow12+2\left(ab+bc+ac\right)=36\Leftrightarrow ab+bc+ac=12\)

Kết hợp với \(a^2+b^2+c^2=12\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

Kết hợp với \(a+b+c=6\Leftrightarrow a=b=c=2\)

\(P=\left(a-3\right)^{2019}+\left(b-3\right)^{2019}+\left(c-3\right)^{2019}=\left(-1\right)^{2019}+\left(-1\right)^{2019}+\left(-1\right)^{2019}=-3\)

21 tháng 8 2020

Đặt :

\(H=1^2-2^2+3^2-4^2+5^2-6^2+......+2019^2-2020^2\)

\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+.\left(5^2-6^2\right)+...+\left(2019^2-2020^2\right)\) (Có 1010 nhóm)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(2019-2020\right)\left(2019+2020\right)\)

\(=-3-7-11-......-4039\)

\(=-\left(3+7+11+4039\right)\)

\(=-\frac{\left(4039+3\right).1010}{2}\)

\(=-2041210\)

Vậy....