K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

đợi xí.

mk đổi nick 

nha,tối nay !

CBHT

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

DD
25 tháng 2 2021

Vì \(n\inℕ\Rightarrow2n+5\ge5\). Lại có \(\frac{6}{2n+5}\)là số nguyên nên suy ra \(2n+5=6\Leftrightarrow n=\frac{1}{2}\)(không thỏa mãn) .

Vậy không tồn tại số tự nhiên \(n\) thỏa mãn yêu cầu bài toán. 

a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)

\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)

\(\Rightarrow3n-9-3n+12⋮n-4\)

\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)

\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)

\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)

b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)

\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)

\(\Rightarrow6n+5-6n+3⋮2n-1\)

\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)

Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

8 tháng 6 2019

* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4 

Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4 

Mà 3. ( n - 4 ) chia hết cho n - 4  

     3 . ( n - 4 ) + 21 chia hết cho n - 4  <=> 21 chia hết cho n - 4 

=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 } 

n - 4 = 1 => n = 5 

n - 4 = 3 => n = 7 

n - 4 = 7 => n = 11 

n - 4 = 21 => n = 25 

Vậy n = { 5 ; 7 ; 11 ; 25 }

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

27 tháng 7 2016

\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

\(A=\frac{2\left(n-3\right)+7}{n-3}+\frac{3\left(n-3\right)+4}{n-3}+\frac{4\left(n-3\right)+7}{n-3}\)

\(A=2+\frac{7}{n-3}+3+\frac{4}{n-3}+4+\frac{7}{n-3}\)

\(A=9+\frac{7+4+7}{n-3}\)

\(A=9+\frac{18}{n-3}\)

=> A là phân số <=> \(\frac{18}{n-3}\)là phân số <=>n - 3 khác Ư ( 18 ) <=> n - 3 khác ( 1 ; -1 ; 2 ; -2 ; .. ;18 ; -18 )

Tự làm nha 

b, A thuộc Z <=> \(\frac{18}{n-3}\)l thuộc Z <=> n -3 thuộc Ư ( 18 ) <=<>  .....

24 tháng 5 2019

\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)

                                       <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

     Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

24 tháng 5 2019

Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}

n+2\(\in\)Ư(12)

2n-5\(\in\)Ư(6)

=>n=\(\pm\)1;\(\pm\)3,...

6 tháng 3 2018

để M là số nguyên 

\(\Rightarrow2n-7⋮n-5\Rightarrow2\left(n-5\right)+3.\)

\(\Rightarrow n-5\inƯ\left(3\right)=\left[\pm1;\pm3\right]\Rightarrow\)

+n - 5 = -1 \(\Rightarrow\)n = 4

+n - 5 = -3 \(\Rightarrow\)n = 2

+n - 5 = 1 \(\Rightarrow\)n = 6

+n - 5 = 3 \(\Rightarrow\)n = 8

6 tháng 3 2018

Để M là số nguyên

=> M thuộc Z

=> \(\frac{2n-7}{n-5}\)Thuộc Z

=> 2n - 7 \(⋮\)n - 5

=> 2n - 10 + 3 \(⋮\)n - 5

=> 2.( n - 5 ) + 3 \(⋮\)n - 5 mà 2 . ( n - 5 ) \(⋮\)n - 5 => 3 \(⋮\)n - 5

=> n - 5 thuộc Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }

=> n thuộc { - 2 ; 4 ; 6 ; 8 }

Vậy n thuộc { - 2 ; 4 ; 6 ; 8 }