K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2024

Ta có:

\(n^2+1\vdots 2n+1\\\Rightarrow 2n^2+2\vdots2n+1\\\Rightarrow 2n^2+2-n(2n+1)\vdots2n+1\\\Rightarrow 2-n\vdots2n+1\\\Rightarrow 4-2n\vdots2n+1\\\Rightarrow 4-2n+(2n+1)\vdots2n+1\\\Rightarrow5\vdots 2n+1\\\Rightarrow 2n+1\in Ư(5)\\\Rightarrow 2n+1\in \{1;5;-1;-5\}\\\Rightarrow 2n\in \{0;4;-2;-6\}\\\Rightarrow n\in\{0;2;-1;-3\}\)

Vậy: ...

10 tháng 6 2024

n2 + 1 chia hết cho 2n + 1

→ 4n2 + 4 chia hết cho 2n + 1

→ 4n2 - 1 + 5 chia hết cho 2n + 1

→  5 chia hết cho 2n + 1

→   2n + 1 thuộc Ư(5) = {1;5;-1;-5}

→   2n  thuộc {0;4;-2;-6}

→   n  thuộc {0;2;-1;-3}

Thay lần lượt n  thuộc {0;2;-1;-3} vào để kiểm tra n2 + 1 chia hết cho 2n + 1, ta thấy  n  thuộc {0;2;-1;-3} đều thỏa mãn

Vậy n  thuộc {0;2;-1;-3}.

21 tháng 12 2020

biết rồi

1 tháng 11 2018

a, n + 8 chia hết cho n + 1

=> n + 1 + 7 chia hết cho n + 1

=> 7 chia hết cho n + 1

=> n + 1 \(\in\)Ư ( 7 ) 

Mà Ư(7) = { 1 ; 7 }

+>  n + 1 = 1 => n = 0

+> n + 1 = 7 => n = 6

b, 

2n + 11 chia hết cho n - 3

=> 2n - 6 + 17 chia hết cho n - 3 

=> 17 chia hết cho n - 3

=> n - 3 \(\in\)Ư ( 17 ) 

Mà Ư(17) = { 1 ; 17 }

+>  n - 3 = 1 => n = 4

+> n - 3 = 17 => n = 20

c, 

4n - 3 chia hết cho 2n + 1

=> 4n + 2 - 5 chia hết cho 2n + 1

=> 5 chia hết cho 2n + 1

=> 2n + 1 \(\in\)Ư ( 5 ) 

Mà Ư(5) = { 1 ; 5 }

+>  2n + 1 = 1 => n = 0

+> 2n + 1 = 5 => n = 2

14 tháng 11 2015

a)2n-1 chia hết cho n-2

2n-4+3 chia hết cho n-2

2(n-2)+3 chia hết cho n-2

3 chia hết cho n-2 hay n-2 EƯ(3)={1;3;-1;-3}

=>nE{3;5;1;-1}

b)n2-n+2 chia hết cho n-1

n(n-1)+2 chia hết cho n-1

=>2 chia hết cho n-1 hay n-1EƯ(2)={1;2;-1;-2}

=>nE{2;3;0;-1}

C)tương tự

24 tháng 1 2016

=>(n2+3n)+(3n+9)+2 chia hết cho n+3

=>n(n+3)+3(n+3)+2 chia hết cho n+3

=>(n+3)(n+3)+2 chia hết cho n+3

Mà (n+3)(n+3) chia hết cho n+3

=>2 chia hết cho n+3

=> n+3 thuộc Ư(2)={1;2;-1;-2}

=>n thuộc {-2;-1;-4;-5}

24 tháng 1 2016

Để A nguyên

=>n2-3n+1 chia hết cho n+1

=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1

=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1

Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1

=>1 chia hết cho n+1

=>n+1 thuộc Ư(1)={1;-1}

=>n thuộc {0;-2}