Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n−18n−18 và n−41n−41 là số chính phương ta có
{n+18=a2n−41=b2→n+18−(n−41)=(a−b)(a+b)=59=1.59→{a−b=1a+b=59→{a=30b=29→n=882
Câu hỏi hayHỌC BÀIKIỂM TRALUYỆN TẬPChưa trả lờiHỌC BÀICâu hỏi tôi quan tâmCâu hỏi của bạn bèGửi câu hỏiTrang đầu
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n
như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2
mà n2 và (n+1)2 là 2 số chính phương liên tiếp
=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)
Tham khảo ở đây:
https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/
Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn
\(n^2+n+6=a^2\)
\(\Rightarrow4n^2+4n+24=4a^2\)
\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)
\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
Theo (1) ta thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)
Từ đó ta tìm được a=6a=6, n=5n=5.
Vậy n=5 là giá trị cần tìm