Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
mk nhớ là làm bài này rồi mà nhỉ, bạn kéo thanh cuốn xuống xíu là thấy bài của mk
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
a)n+2={1;2;4;8;16}
n={-1;0;2;6;14}
b)(n-4)chia hết cho(n-1)
(n-1-3) chia hết cho(n-1)
Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)
Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}
suy ra n={1;4;0;-2}
c) 2n+8 thuộc B(n+1)
suy ra n+1 chia het cho 2n+8
suy ra 2n+2 chia het cho 2n+8
suy ra (2n+8)-6 chia het cho2n+8
Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8
suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}
mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)
suy ra 2n+8 thuộc{2;6;-2;-6}
suy ra 2n thuộc{-6;-2;-10;-14}
suy ra n thuộc {-3;-1;-5;-7}
d) 3n-1 chia het cho n-2
suy ra [(3n-6)+5chia hết cho n-2
Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2
suy ra n-2 thuộc{1;5;-1;-5}
suy ra n thuộc{3;7;1;-3}
e)3n+2 chia hết cho 2n+1
suy ra [(6n+3)+1] chia hết cho 2n+1
Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1
suy ra 2n+1 thuộc{1;-1}
suy ra 2n thuộc {0;-2}
suy ra n thuộc {0;-1}
Gọi d là ucln của 4n+7 và 2n+4
Ta có 4n+7 chia hết cho d
2n+4 chia hết cho d
=> 4n+7 chia hết cho d
2(2n+4) chia hết cho d
=> 4n+7 chia hết cho d
4n+8 chia hết cho d
=> (4n+8)-(4n+7) chia hết cho d
=> 1 chia hết cho d
=> d thược u(1)
=> d=1
Vậy ucln của 4n+7 và 2n+4 là 1
Gọi \(d\inƯC\left(4n+7,2n+4\right)\) vs \(d\inℕ^∗\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow4n+8-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\RightarrowƯCLN\left(4n+7,2n+4\right)=1\)