K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

 ta có:

n=5k+2                   =>2n=10k+4

n=7k1+4                 =>2n=14k1+8

=>2n+6 thuộc ƯC{5,7}={0,35,70,105,...}

Vì n là số tự nhiên nhỏ nhất có ba chữ số nên 2n+6=105

=> n=49,5(loại)

=>2n+6=140

=>n=67

vậy số cần tìm là 67

21 tháng 12 2017

Theo bai ra ta có :

a chia cho 5 dư 2 , chia cho 7 dư 4 và a nhỏ nhất có 3 chữ số

=>(a+3) chia hết cho 5 ,chia hết cho 7 và a nhỏ nhất có 3 chữ số

=>(a+3) thuộc BC (5,7) và a nhỏ nhất có 3 chữ số 

=>(a+3) là BCNN(5,7)

5=5 

7=7

BCNN(5,7)=5.7= 35

Mà (a+3) là BCNN(5,7)

=> a + 3 =35

     a       = 35 - 3

     a        =32

Vậy a=32

1 tháng 1 2022

Gọi  là số cần tìm. (  và )

 chia 7 dư  3 nên    chia hết cho 7

 và  chia 11 dư 5 nên    chia hết cho 11.

Ta thấy:

 suy ra  chia hết cho 7     (1)

 suy ra  chia hết cho 11  (2)

Từ (1) và (2) suy ra  chia hết cho BCNN

     

Để  nhỏ nhất có ba chữ số ta chọn  khi đó .

Vậy số cần tìm là .

3 tháng 10 2020

khong bit

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
20 tháng 12 2016

ai biết làm làm hộ tôi cái

3 tháng 9 2021

a,Theo đề bài, a : 5,6,7,8 (dư lần lượt 1,2,3,4)

Vậy (a+4) chia hết cho 5,6,7,8 Mà BCNN của 5,6,7,8 là: 2. 7. 3. 5= 840

a=840-4=836

    Đáp số: 836

30 tháng 7 2023

1, Gọi số đó là :a

=>a-3⋮4,6,8

=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)

=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)

Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.

5 tháng 4 2024

Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...

hehe

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

26 tháng 11 2016

Gọi a là số tự nhiên nhỏ nhất có 3 chữa số(a\(\in\)N*)

Vì a:5(dư2)=>(a+3)chia hết cho 5

    a:7(dư4)=>(a+3)chia hết cho 7

=>(a+3)\(\in\)BC(5;7)

5=5

7=7

BCNN(5;7)=5.7=35

BC(5;7)=B(35)={0;35;70;105;140;175;210;...}

=>(a+3)={0;35;70;105;140;175;210;...}

=>a={32;67;102;137;172;207;...}

Mà a là số TN nhỏ nhất có 3 chữ số

=>a=102

Vậy số tự nhiên cần tìm là 102

26 tháng 11 2016

có chắc chắn đúng ko Jemmy Linh

12 tháng 2 2016

5)

Gọi số tự nhiên nhỏ nhất cần tìm là a (a thuộc N*)

Theo bài ra ta có:

a chia 3 dư 1=> a + 2 chia hết cho 3

a chia 4 dư 2=> a + 2 chia hết cho 4 

a chia 5 dư 3=> a + 2 chia hết cho 5

a chia 6 dư 4=> a + 2 chia hết cho 6

a chia hết cho 11

=> a + 2 thuộc BC(3; 4; 5; 6)

a chia hết cho 11

BCNN(3; 4; 5; 6) = 60

=> a + 2 thuộc B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; ... }

=> a thuộc {x; 59; 118; 178; 238; 298; 358; 418; 478; ... }

Mà a là số tự nhiên nhỏ nhất chia hết cho 11 => a = 418

        Vậy số tự nhiên cần tìm là 418.