Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a chia cho 5 dư 1 thì a phải có tận cùng là 6 hoặc 1.
Để a chia cho 2 dư 1 thì a phải có tận cùng là 1 số lẻ.
Suy ra a sẽ có tận cùng là 1.
Giả sử a có dạng là Ab thì chữ số tận cùng là b.
Vậy b = 1.
Ta có Ab = A1.
Để A1 chia hết cho 9 thì ( A + 1 ) phải chia hết cho 9.
Mà 1 chia cho 9 dư 1,suy ra A chia cho 9 phải chia cho 9 dư 8.
A = 8 ( loại vì 81 chia 7 không dư 3)
A = 17 ( Đúng ).
Vậy số tự nhiên a nhỏ nhất thỏa mãn yêu cầu đề bài là 171.
a chia 2 dư 1 \(\Rightarrow\)a có chữ số tận cùng là 1; 3; 5; 7; 5
a chia 5 dư 1 \(\Rightarrow\)a có chữ số tận cùng là 1; 6
Từ 3 điều trên\(\Rightarrow\)a có chữ số tận cùng là 1
a chia 7 dư 3 \(\Rightarrow\)a có thể là: 3; 10; 17; 24; 31; 38; 45; 52; 59; 66; 73;...
Từ 4 điều trên\(\Rightarrow\)a có thể là: 31; 101; 171; 241;...
Trong dãy số đó chỉ có số 171 là số nhỏ nhất chia hết cho 9; chia 2 dư 1; chia 5 dư 1; chia 7 dư 3
Vậy số đó là 171
đức tính tốt , thẳng thắng , hi vọng bạn vẫn giữ nguyên tính tốt này
Bài giải:
Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
– Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
– Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Đáp số: 171
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90