K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=n^2+n^2+2n+1+n^2+4n+4+n^2+6n+9\)

\(=4n^2+12n+14=\left(2n\right)^2+2\cdot2n\cdot3+3^2+5=\left(2n+3\right)^2+5\)

vì \(5⋮5\)để \(A⋮5\Rightarrow\left(2n+3\right)^2⋮5\Rightarrow2n+3⋮5\Rightarrow2n-2+5⋮5\Rightarrow2n-2⋮5\Rightarrow2\left(n-1\right)⋮5\Rightarrow n-1⋮5\)

vì 1 chia 5 dư 1 để n-1 chia hết cho 1 suy ra n chia cho 5 phải dư 1

\(\Rightarrow n=\left(6;11;16;...;5n+1\right)\)

vậy \(n=\left(6;11;16;...;5n+1\right)\)thì \(A⋮5\)

15 tháng 12 2016

làm câu

20 tháng 4 2018

a/ \(n=2m+1\)

\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)

b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)

Để nó chia hết thi n + 1 là ước nguyên của 2

\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)

\(\Rightarrow n=\left(-3,-2,0,1\right)\)

13 tháng 11 2017

ko bít

13 tháng 11 2017

ko biết nói làm j

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a) (n2+ 3n 1) (n + 2) n3+ 2

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b) (6n + 1) (n + 5) (3n + 5) (2n 1)

= 6n2 + 30n + n + 5 - 6n2 + 3n - 10n +5

= 24n + 10

= 2(12n +5) chia hết cho 2

6 tháng 3 2021

\(A=\left(2^n-1\right)\left(2^n+1\right)\)

\(=\left(2^n-1\right)\left(2+1\right)\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)\)

\(=\left(2^n-1\right)3\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)⋮3\forall n\in N\)

Vậy \(A⋮3\forall n\in N\)

18 tháng 2 2018

Đồng dư thôi