Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(a+c=2b\) vào \(2bd=c\left(b+d\right)\)
\(\Rightarrow\)\(2bd=c\left(b+d\right)\)\(=\left(a+c\right)d=c\left(b+d\right)\)
\(\Rightarrow ad+cd=cb+cd\Rightarrow ad=cb\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\) với \(\forall b,d\ne0\) (đpcm)
b) Tìm tất cả các số nguyên tố (x;y) thỏa mãn đẳng thức: x^2 - 2y^2 = 1? | Yahoo Hỏi & Đáp
b) Giải:
Ta có: \(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\) \((*)\)
Ta xét hai trường hợp:
Trường hợp 1: Nếu \(x\) chia hết cho \(3.\)
Mà \(x\) là số nguyên tố \(\Leftrightarrow x=3\) thay vào \((*)\) ta có:
\(3^2-1=2y^2\Leftrightarrow2y^2=8\Leftrightarrow y=2\)
Trường hợp 2: Nếu \(x\) không chia hết cho \(3.\)
\(\Leftrightarrow\left(x^2-1\right)⋮3\Leftrightarrow2y^2⋮3.\) Mà \(\left(2;3\right)=1\)
\(\Leftrightarrow y⋮3\) khi đó \(x^2=19\) \(\Leftrightarrow x=\sqrt{19}\notin P\)
Vậy \(\left(x,y\right)=\left(3;2\right)\)
m;n \(\ge\)1
+ Nếu m < n thì 2m < 2n => 2m + 2n < 2n + 2n => 2m+n < 2n+1 (Vì 2m + 2n = 2m+n)
=> m + n < n + 1 => m < 1 trái với giả thiết nên m \(\ge\) n
Nếu m > n , tương tự như trên => n < 1 trái giả thiết
=> m = n
=> 2m + 2n = 2n + 2n = 2n+n => 2.2n = 22n => 2n+1 = 22n => n + 1 = 2n => n = 1
Vậy m= n = 1
Ta lấy 2 số nguyên tố nhỏ nhất
3 và 2
32 - 2.22
=9 - 2.4
= 9 - 8
= 1
Biến đổi biết tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).