Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n+1\inƯ\left(n^2+2n-3\right)\)
\(\Leftrightarrow n^2+2n-3⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)
Vì \(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)
\(\Leftrightarrow n+1-4⋮n+1\)
Vì \(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) |
\(n\) | \(-2\) | \(0\) | \(-3\) | \(1\) | \(-5\) | \(3\) |
Vậy...
b) \(n^2+2\in B\left(n^2+1\right)\)
\(\Leftrightarrow n^2+2⋮n^2+1\)
\(\Leftrightarrow n^2+1+1⋮n^2+1\)
Vì \(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n^2+1\) | \(-1\) | \(1\) |
\(n\) | \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai) |
\(0\) (tm) |
Vậy \(n=0\)
c) \(2n+3\in B\left(n+1\right)\)
\(\Leftrightarrow2n+3⋮n+1\)
\(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) |
\(n\) | \(-2\) | \(0\) |
Vậy...
a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)
⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1
⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1
Vì n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1
⇔n+1−4⋮n+1⇔n+1−4⋮n+1
Vì n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}
Ta có bảng sau:
n+1n+1 | −1−1 | 11 | −2−2 | 22 | −4−4 | 44 |
nn | −2−2 | 00 | −3−3 | 11 | −5−5 | 33 |
Vậy...
b) n2+2∈B(n2+1)n2+2∈B(n2+1)
⇔n2+2⋮n2+1⇔n2+2⋮n2+1
⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1
Vì n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}
Ta có bảng sau:
n2+1n2+1 | −1−1 | 11 |
nn | √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai) |
00 (tm) |
Vậy n=0n=0
c) 2n+3∈B(n+1)2n+3∈B(n+1)
⇔2n+3⋮n+1⇔2n+3⋮n+1
⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1
⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1
Vì 2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}
Ta có bảng sau:
n+1n+1 | −1−1 | 11 |
nn | −2−2 | 00 |
(n^2 -9)(2n+6) =0
2(n-3)(n+3)^2=0
tương đương n-3= 0 và (n+3)^2=0
suy ra n=3 và n=-3
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)=\left[\left(5-8-9\right)m^2\right]\left[\left(-1+4\right)n^3\right]\)
\(=\left(-12\right)m^2.3n^3=\left(-12.3\right)m^2n^3\)
\(A>0\Leftrightarrow-36m^2n^3>0\)
Do \(m^2>0\forall m\Rightarrow A>0\Leftrightarrow n^3< 0\Leftrightarrow n< 0\)
Vậy với mọi m và n<0 thì A >0
\(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)\\ =-12m^2.3n^3\\ =-36m^2.n^3\ge0\\ \Rightarrow-36n^3\ge0\\ \Rightarrow n^3\le0\\ \Rightarrow n\le0\)
ĐỂ A <=0 thì n<=0 và bất kì giá trị của m
\(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)\)
\(=\)\(-12m^2.3n^3=-36m^2.n^3\)
Với mọi giá trị của m, ta có:
\(-36m^2\le0\)
Để \(A\ge0\)thì \(n\le0\)
\(\Rightarrow\)\(-36m^2.n^3\ge0\)
Vậy với \(m\in R;n\le0\)thì \(A\ge0\)