K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(A=\left(x-3\right)^2+\left(x-11\right)^2\)

\(A=x^2-6x+9+x^2-22x+121\)

\(A=2x^2-28x+130\)

\(A=2\left(x^2-14x+49\right)+32\)

\(A=2\left(x-7\right)^2+32\ge32\)

Vậy GTNN của A là 32 khi x = 7

2 tháng 8 2018

\(A=19-6x-9x^2 \)

\(A=-\left(9x^2+6x+1\right)+20\)

\(A=-\left(3x+1\right)^2+20\le20\)

Vậy GTLN của A là 20 khi x = \(-\frac{1}{3}\)

29 tháng 11 2017

Câu 1:

\(A=x^2-3x+9\\ =x^2-3x+\dfrac{9}{4}+\dfrac{27}{4}\\ =\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{27}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge0\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }A_{\left(Min\right)}=\dfrac{27}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)

\(B=9x^2-6x+2\\ =9x^2-6x+1+1\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \Rightarrow B=\left(3x-1\right)^2+1\ge1\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ Vậy\text{ }B_{\left(Min\right)}=1\text{ }khi\text{ }x=\dfrac{1}{3}\)

\(C=-x^2+2x+4\\ =-x^2+2x-1+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow-\left(x-1\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-1\right)^2+5\le5\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ \text{Vậy }C_{\left(Max\right)}=5\text{ }khi\text{ }x=1\)

\(D=-x^2+4x\\ =-x^2+4x-4+4\\ =-\left(x^2-4x+4\right)+4\\ =-\left(x-2\right)^2+4\\ \\ Do\text{ }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-2\right)^2+4\le4\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }C_{\left(Max\right)}=4\text{ }khi\text{ }x=2\)

29 tháng 11 2017

Câu 2:

\(\text{Ta có : }x+y=2\\ \Rightarrow\left(x+y\right)^2=2^2\\ \Rightarrow x^2+2xy+y^2=4\\ Thay\text{ }x^2+y^2=10\text{ }vào\\ \Rightarrow2xy+10=4\\ \Rightarrow2xy=-6\\ \Rightarrow xy=-3\\ \text{Ta lại có : }x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ Thay\text{ }x^2+y^2=10;x+y=2;xy=-3\text{ }ta\text{ }được:\\ x^3+y^3=2\cdot\left(10+3\right)=26\)

Vậy \(x^3+y^3=26\text{ }tại\text{ }x+y=2;x^2+y^2=10\)

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

26 tháng 6 2018

\(A=4x^2-12x+11\)

\(A=\left(2x\right)^2-2.2x.3+3^2+2\)

\(A=\left(2x-3\right)^2+2\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)

\(B=x^2-2x+y^2+4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Ta có:  \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)

\(A=-x^2-6x+1\)

\(\Rightarrow-A=x^2+6x-1\)

\(-A=\left(x^2+2.3x+3^2\right)-10\)

\(-A=\left(x+3\right)^2-10\)

\(\Rightarrow A=-\left(x+3\right)^2+10\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)

Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy Amax=10\(\Leftrightarrow\)x= -3

Sửa đề:

\(B=-2x^2-8x-6\)

\(B=-2.\left(x^2+2.2x+2^2\right)+2\)

\(B=-2.\left(x+2\right)^2+2\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)

Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy Bmax=2\(\Leftrightarrow x=-2\)

26 tháng 6 2018

Đề phải là tìm min mới đúng

a, A=4x2-12x+11

=(4x2-12x+9)+2

=(2x-3)2+2

Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2

Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2

Vậy Amin = 2 khi x=3/2

b, B=x2-2x+y2+4y+6

=(x2-2x+1)+(y2+4y+4)+1

=(x-1)2+(y+2)2+1

Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x=1,y=-2

Vậy Bmin = 1 khi x=1,y=-2

29 tháng 7 2019

\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)

Vậy \(A_{min}=-13\Leftrightarrow x=3\)

29 tháng 7 2019

\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

12 tháng 8 2017

9x2-6x-3=0

=>9x2-9x+3x-3=0

=>(x-1)(9x-3)=0

=>x-1=0 hoặc 9x+3 = 0

=> x=1 hoặc x=-1/3

b. x3+9x2+27x+19=0

   x3+x2+8x2+8x+19x+19=0

(x+1)(x2+8x+19)=0

x+1=0 => x=-1 

x2+8x+19= x2+8x+16+3=(x+4)2+3 lớn hơn hoặc bằng 3., lớn hơn 0 với moị x

12 tháng 8 2017

a, \(\Rightarrow3\left(3x^2-2x-1\right)=0\)

\(\Rightarrow3x^2-2x-1=0\)

\(\Rightarrow x\left(3x-2\right)=1\)

\(\Rightarrow\orbr{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)

b,\(\Rightarrow x^3+3x^2+6x^2+9x+18x+19=0\)

\(\Rightarrow x^2\left(x+3\right)+3x\left(x+3\right)+18\left(x+3\right)-2=0\)

\(\Rightarrow\left(x+3\right)\left(x^2+3x+18\right)=2\)

Mk k co thoi gian. buoc tiep theo tu lam not nhe

24 tháng 9 2017

Ta có : C = x2 - 10x 

               = x2 - 10x + 25 - 25 

            C = (x - 5)2 - 25

Vì \(\left(x-5\right)^2\ge0\forall x\in R\)

Nên : \(C=\left(x-5\right)^2-25\ge-25\forall x\in R\)

Vậy \(C_{min}=-25\) khi x - 5 = 0 => x = 5

Ta có : \(C=6x-x^2\)

\(=-\left(x^2-6x\right)\)

\(=-\left(x^2-6x+9-9\right)\)

\(=-\left(x^2-6x+9\right)+9\)( chuyển -9 ra ngoặc thành 9 ) 

\(C=-\left(x-3\right)^2+9\)

Vì \(-\left(x-3\right)^2\le0\forall x\in R\)

Nên : \(C=-\left(x-3\right)^2+9\le9\forall x\in R\)

Vậy \(C_{max}=9\) khi x - 3 = 0 => x = 3 . 

2 tháng 9 2020

a) Ta có : \(A=x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Vạy GTNN của \(A=\frac{11}{4}\) tại \(x=\frac{1}{2}\)

b) \(B=2x^2+10x-2\)

\(=2.\left(x^2+5x-1\right)\)

\(=2.\left[\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{29}{4}\right]\)

\(=2.\left(x+\frac{5}{2}\right)^2-\frac{29}{2}\ge-\frac{29}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{5}{2}\)

Vạy GTNN của \(B=-\frac{29}{2}\) tại \(x=-\frac{5}{2}\)

c) \(C=19-6x-9x^2\)

\(=-\left(9x^2+6x\right)+19\)

\(=-\left[\left(3x\right)^2+2.3x.1+1\right]+20\)

\(=-\left(3x+1\right)^2+20\le20\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)

Vậy GTLN của \(C=20\) khi \(x=-\frac{1}{3}\)

2 tháng 9 2020

Bạn tham khảo tại linh này : Câu hỏi của Zero Two - Toán lớp 8 - Học toán với OnlineMath