Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ =\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\\ =\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy GTNN của biểu thức là 2
\(G=x^2-4xy+5y^2+10x-22y+28.\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Do \(\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0\forall x\)nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Vậy \(MinG=2\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
\(G=x^2-4xy+5y^2+10x-22y+28\)
\(G=x^2-2x\left(2y-5\right)+5y^2-22y+28\)
\(G=x^2-2x\left(2y-5\right)+\left(4y^2-20y+25\right)+\left(y^2-2y+1\right)+2\)
\(G=x^2-2x\left(2y-5\right)+\left(2x-5\right)^2+\left(y-1\right)^2+2\)
\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x=-3;y=1
Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+5y^2-22y+28\)
\(=x^2-x\left(4y-10\right)+5y^2-22y+28\)
\(=x^2-2.x.\frac{4y-10}{2}+\left(\frac{4y-10}{2}\right)^2+5y^2-22y-\left(\frac{4y-10}{2}\right)^2+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-\frac{16y^2-80y+100}{4}+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-4y^2+20y-25+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+y^2-2y+3=\left(x-\frac{4y-10}{2}\right)^2+y^2-2.y.1+1^2+2\)
\(=\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\)
Vì \(\left(x-\frac{4y-10}{2}\right)^2\ge0;\left(y-1\right)^2\ge0=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2\ge0\)
\(=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\ge2\) (với mọi x,y)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}\left(x-\frac{4y-10}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}}< =>\hept{\begin{cases}x-\frac{4y-10}{2}=0\\y=1\end{cases}}< =>\hept{\begin{cases}x-\frac{4-10}{2}=0\\y=1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy MInA=2 khi x=-3;y=1
Sửa 2x ^2 thành x^2 là đúng đề
Ta có:
x2-4xy+5y2+10x-22y+28 = x2-4xy+4y2+10x-20y+25 + y2-2y+1 +2= (x-2y+5)2 + (y-1)2 +2\(\ge\)2
dấu "=" xảy ra <=> y-1 =0 và x-2y+5 = 0 ==> x= -3;y=1
ủa, cái đề này khác đề ở trên hả
Đặt biểu thức là A, ta có:
A=x2+x2-2.x.2y+(2y)2-(2y)2+5y2+10x-22y+28
A=x2+(x-2y)2+y2+10x-22y+28
A=x2+2.x.5+52-52+y2-2.y.11+112-112+28+(x-2y)2
A=(x+5)2+(y-11)2+(x-2y)2-118
-Vì 3 HĐT ở trên luôn lớn hơn hoặc bằng 0 với mọi x,y thuộc R, nên GTNN nhỏ nhất là -118 khi
(x+5)2=0=>x+5=0=>x=-5
(y-11)2=0=>y-11=0=>y=11
-Tới đây thì có vẻ nhu bạn đã cho đề sai òi
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + (10x - 22y) + 25 + y2 + 3
= (x - 2y)2 + 10(x - 2y) + 25 + y2 + 3
= (x - 2y + 5)2 + y2 + 3 \(\ge\)3
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2y+5=0\\y=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=5\\y=0\end{cases}}\)
Vậy Min C = 3 \(\Leftrightarrow\)x = 5; y = 0
bạn sai đề nha. là x^2. 2x^2 thì k giải đc đâu
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Rightarrow MinC=2\Leftrightarrow y=1;x=-3\)