Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\in Z\)\(\Rightarrow x+1\ne0\Rightarrow x\ne-1\)
Gọi d=(x-4,x+1)
\(\Rightarrow\hept{\begin{cases}x-4⋮d\\x+1⋮d\end{cases}}\)
\(\Rightarrow x+1-\left(x-4\right)⋮d\)\(\Rightarrow5⋮d\)
Giả sử d=5
=> \(x=5k+4\left(k\in Z\right)\)
mà \(\frac{x-4}{x+1}\)là phân số tối giản nên d=1
=>\(x\ne5k+4\)
\(\left|2x+3\right|+2x=-4\)
\(\Leftrightarrow\left|2x+3\right|=-4-2x\)(1)
*Nếu \(x\ge\frac{-3}{2}\)thì \(2x+3\ge0\Rightarrow\left|2x+3\right|=2x+3\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x+3=-4-2x\Leftrightarrow4x=-7\Leftrightarrow x=\frac{-7}{4}\left(L\right)\)
*Nếu \(x< \frac{-3}{2}\)thì \(2x+3< 0\Rightarrow\left|2x+3\right|=-2x-3\)
\(\Rightarrow\left(1\right)\Leftrightarrow-2x-3=-4-2x\Leftrightarrow0=-1\left(L\right)\)
Vậy pt vô nghiệm
\(\left|2x+3\right|+2x=-4\)
\(\Leftrightarrow\left|2x+3\right|=-4-2x\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=-4-2x\\2x+3=-\left(-4-2x\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+2x=-4-3\\2x+3=4+2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=-7\\2x-2x=4-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{4}\\0=1\left(loại\right)\end{cases}}\)
Vậy : \(x=-\frac{7}{4}\)
2 *x *x - x*y- 3 *y = 3*x
2 *x*x-(x-3)*y=3*x
em hết biết giải rồi chị ơi vì em học lớp 5
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
Lời giải :
Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)
Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)
Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)
\(\Leftrightarrow3x-2z=-56\)
\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)
\(\Leftrightarrow k=\frac{-560}{51}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)
\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)
Ta có: \(\left(2x-4\right)^6\ge0lđ\forall x.\)
\(\left(y-7\right)^{12}\ge0lđ\forall x\)
=> Q\(\ge-21\)
Vậy min Q=\(-21\Leftrightarrow x=2,y=7\)
Học tốt