Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{2015}-\frac{2}{2015x}+\frac{1}{x^2}=\left(\frac{1}{x^2}-2.\frac{1}{x}.\frac{1}{2015}+\frac{1}{2015^2}\right)+\frac{1}{2015}-\frac{1}{2015^2}\)
\(=\left(\frac{1}{x}-\frac{1}{2015}\right)^2+\frac{2014}{2015^2}\ge\frac{2014}{2015^2}\)
\(MinP=\frac{2014}{2015^2}\) khi 1/x =1/2015 hay x = 2015
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
Áp dụng bđt svacxơ, ta có
\(A\ge\frac{4}{x+\sqrt{xy}}\)
mà \(\sqrt{xy}\le\frac{x+y}{2}\Rightarrow x+\sqrt{xy}\le\frac{3}{2}x+\frac{1}{2}y=\frac{1}{2}\)
=> \(A\ge\frac{1}{8}\)
dấu = xảy ra <=> x=y=1/4
nguồn :Quân Minh
nhok cho chị mượn chỗ lát
Áp dụng bđt bu nhi a ta có \(\left(2x^2+3xy+4y^2\right)\left(2+3+4\right)\ge\left(2x+3.\sqrt{xy}+4y\right)^2\)
2 nha bạn